Empirical Research at USC-CSE

Download Report

Transcript Empirical Research at USC-CSE

Empirical Research at USC-CSE
Barry Boehm, USC-CSE
ISERN Presentation
October 8, 2000
[email protected]
http://sunset.usc.edu
Empirical Research Areas
• Software cost/schedule/quality data and
modeling
– 7-step modeling methodology: Bayesian
calibration
– COCOMO II, COCOTS, COQUALMO, CORADMO, ...
• MBASE* Laboratory
– 20 real-client Web/Net digital library projects per
year
– Experience Factory approach to refining MBASE
– Behavioral studies in developer-client
collaboration
*Model-Based (System) Architecting and Software Engineering
USC-CSE Modeling Methodology
Analyze Existing
literature
1
Perform
Behavioral Analysis
2
Identify Relative
Significance
3
A-PRIORI MODEL
+
SAMPLING DATA
=
A-POSTERIORI MODEL
Perform ExpertJudgement, Delphi
Assessment
4
Gather Project Data
5
Determine Bayesian
A-Posteriori Update
6
Gather more data;
refine model
7
Results of Bayesian Update: Using Prior
and Sampling Information (Step 6)
A-posteriori Bayesian update
1.06
1.41
1.51
1.45
A-priori
Experts’ Delphi
Noisy data analysis
Productivity Range =
Highest Rating/
Lowest Rating
Literature,
behavioral analysis
Language and Tool Experience (LTEX)
Critical Success Factors for
Adoption
Application
EDGAR Business Data
Medieval Manuscripts
Technical Reports
Latin American Pamphlets
Cinema-TV
Image Archives
S-Charts
Global Express
Hancock Virtual Museum
Serial Control Records
B-School Working Papers
Data Mining
Dissertations
Hispanic Archive
WWI Archive
Client Characteristics
Transition Preparation
Outcome
Focused Represen- O & M Collabo- Domain
Stable Client
Software Site People
Adopted
tative Resources rative Knowledge
Envir. Success
1996-97
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
(+)
+
(+)
+
+
+
1997-98
+
+
+
+
+
+
(+)
+
(+)
+
(+)
+
+
+
+
+
+
+
+
+
+
(+)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
(+)
+
(+)
+
+
+
+
+
+
+
+
+
+
+
1998-99
+
+
+
+
+
+
+
+
(+)
+
(+)
+
+
+
+
+
+
+
(+)
+
+
(+)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
(+)
Example S&C’s
Type of
Application
Simple Block Diagram
query
Multimedia
Archive
Catalog
update
notification
query
update
MM asset
info
MM
Archive
Examples
1, 3, 4, 5,
6, 7, 8, 9,
10, 11, 12,
13, 14, 15,
20, 31, 32,
35, 36, 37,
39
Simplifiers
·
·
·
Use standard
query languages
Use standard or
COTS search
engine
Uniform media
formats
Complicators




MM asset




Natural language
processing
Automated
cataloging or
indexing
Digitizing large
archives
Digitizing
complex or fragile
artifacts
Rapid access to
large Archives
Access to
heterogeneous
media collections
Automated
annotation/descrip
tion/ or meanings
to digital assets
Integration of
legacy systems