Organic 2 PPT
Download
Report
Transcript Organic 2 PPT
“Functional
Groups”
Functional Groups
Most
organic chemistry involves
substituents
–often contain O, N, S, or P
–also called “functional groups”- they
are the chemically functional part of
the molecule, and are the nonhydrocarbon part
Functional Groups
Functional
group - a specific
arrangement of atoms in an organic
compound, that is capable of
characteristic chemical reactions.
–What is the best way to classify
organic compounds? By their
functional groups.
Functional Groups
The
symbol “R” is used to
represent any carbon chains or
rings
-
alkyl groups
Halogen Substituents
Halocarbons - class of organic
compounds containing covalently bonded
fluorine, chlorine, bromine, or iodine
– General formula: R-X (X = halogen)
Naming? Name parent as normal, add the
halogen as a substituent (or prefix)
Halogen Substituents
The
more highly halogenated the
compound is, the higher the b.p.
Few halocarbons found in nature
–but, readily prepared and used
–halothane and also the
hydrofluorocarbons
Substitution Reactions
Organic reactions often much slower than
inorganic reactions
– must break strong covalent bond
– trying to find new catalysts to use
Substitution - an atom (or group of
atoms) replaces another atom or group of
atoms
Substitution Reactions
A
halogen (shown as “X”) can
replace a hydrogen to make a
halocarbon:
R-H + X2 R-X + HX
Sunlight is often a sufficient catalyst:
UV light
CH4 + Cl2
→
CH3Cl + HCl
Substitution Reactions
Treating
benzene with a halogen?
Halogens on carbon chains are
readily displaced by hydroxide ions
(OH1-) to make an alcohol + a salt:
R-X + OH1- R-OH + X1CH3-Cl + NaOH CH3-OH + NaCl
Methanol + sodium chloride
Substitution Reactions
CH3-I + KOH CH3-OH + KI
Iodomethane
Methanol
CH3CH2Br + NaOH CH3CH2OH + NaBr
Bromoethane
Ethanol
Alcohols and Ethers
Alcohols
Alcohols - a class of organic compounds with
an -OH group
– The -OH functional group in alcohols is
called a “hydroxyl” group; thus R-OH is
the formula
How is this different from the hydroxide ion?
(covalent bonding with the carbon- not ionic
with a metal like bases)
Alcohols
Aliphatic
alcohols classified into
categories according to the
number of R groups attached to
the carbon with the hydroxyl
–1 R group: primary alcohol
–2 R groups: secondary alcohol
–3 R groups: tertiary alcohol
Alcohols
Both
IUPAC and common names
For IUPAC:
–drop the -e ending of the parent
alkane name; add ending of -ol,
number the position of -OH
–parent is the longest chain that
contains the carbon with the
hydroxyl attached.
Alcohols
The hydroxyl is given the
lowest position number
Alcohols containing 2, 3, and 4
of the -OH substituents are
named diols, triols, and tetrols
respectively
Alcohols
Common names:
–similar to halocarbons,
meaning name the alkyl
group, then followed by the
word alcohol
–One carbon alcohol = methyl
alcohol
Alcohols
More
than one -OH substituents
are called glycols (ethylene glycol?)
Phenols - compounds in which a
hydroxyl group is attached directly
to an aromatic ring. Cresol is the
common name of o, m, and p
isomers of methylphenol
Properties of Alcohols
Much
like water, alcohols are
capable of hydrogen bonding
between molecules
–this means they will boil at a
higher temp. than alkanes and
halocarbons with a comparable
number of atoms
Properties of Alcohols
Alcohols
are derivates of water; the
-OH comes from water, and thus
are somewhat soluble
Alcohols of up to 4 carbons are
soluble in water in all proportions;
more than 4 carbons are usually
less soluble, because the longer
carbon chain is more nonpolar
Properties of Alcohols
Many
aliphatic alcohols used in
laboratories, clinics, and industry
–Isopropyl alcohol (2-propanol) is
rubbing alcohol; used as antiseptic,
and a base for perfume, creams,
lotions, and other cosmetics
Ethylene glycol (1,2-ethanediol) commonly sold as “antifreeze”
Properties of Alcohols
Glycerol
(1,2,3-propanetriol) used as a moistening agent in
cosmetics, foods, and drugs;
also a component of fats and
oils
Ethyl alcohol (ethanol) used in
the intoxicating beverages; also
an important industrial solvent
Properties of Alcohols
Denatured
alcohol- means it
has been made poisonous by the
addition of other chemicals, often
methyl alcohol (methanol, or wood
alcohol).
As little as 10 mL of methanol has
been known to cause permanent
blindness, and 30 ml has resulted
in death!
Addition Reactions
The
carbon-carbon single bond is
not easy to break
In double bonded alkenes, it is
easier to break a bond
Addition reaction- substance is
added at the double or triple bond
location, after it is broken
Addition Reactions
Addition
of water to an alkene is a
hydration reaction - usually
occurs with heat and an acid (such
as HCl or H2SO4 acting as a
catalyst)
Note the formation of ethanol from
ethene + water
Addition Reactions
If
a halogen is added in an addition
reaction, the result is a halocarbon
that is disubstituted –
The addition of bromine is often
used as a test for saturation Addition of a hydrogen halide? called monosubstituted halocarbon
Addition Reactions
Addition
of hydrogen to produce an
alkane is a hydrogenation
reaction, which usually involves a
catalyst such as Pt or Pd
–common application is the
manufacture of margarine from
unsaturated vegetable oils
(making them solid from a liquid)
Addition Reactions
The
hydrogenation of a double
bond is a reduction reaction,
which in one sense is defined as
the “gain of H”
ethene is “reduced” to ethane;
cyclohexene is “reduced” to
cyclohexane
Ethers
A
class of organic compounds in
which oxygen is bonded to 2
carbon groups: R-O-R is formula
Naming? The two R groups are
alphabetized, and followed by ether
Two R groups the same? Use the
prefix di-
Ethers
Diethyl
ether is the one commonly
called just “ether”
–was the first reliable general
anesthetic
–dangerous- highly flammable,
also causes nausea
ethers are fairly soluble in water
Alcohol used for fuel in the future?
Carbonyl Compounds
Aldehydes and Ketones
Review:
–alcohol has an oxygen bonded to
a carbon group and a hydrogen
–ether has an oxygen bonded to
two carbon groups
An
oxygen can also be bonded
to a single carbon by a double
bond
Aldehydes and Ketones
The
C=O group is called the
“carbonyl group”
–it is the functional group in both
aldehydes and ketones
Aldehydes - carbonyl group
always joined to at least one
hydrogen (meaning it is always on
the end!)
Aldehydes and Ketones
Ketones - the carbon of the
carbonyl group is joined to
two other carbons (meaning
it is never on the end)
Aldehydes and Ketones
Naming?
–Aldehydes: identify longest chain
containing the carbonyl group, then
the -e ending replaced by -al, such
as methanal, ethanal, etc.
–Ketones: longest chain w/carbonyl,
then new ending of -one; number it?
propanone, 2-pentanone, 3-pentanone
Aldehydes and Ketones
Neither
can form intermolecular
hydrogen bonds, thus a much lower
b.p. than corresponding alcohols
wide variety have been isolated from
plants and animals; possible fragrant
odor or taste; many common names
Aldehydes and Ketones
Benzaldehyde
Cinnamaldehyde
Vanillin
Methanal
(the common name is:
formaldehyde)
–40% in water is formalin, a
preservative
Aldehydes and Ketones
Propanone
(common: acetone)
is a good solvent; miscible with
water in all proportions
why is it a good substance used
in nail-polish removers? (a
powerful solvent-able to
dissolve both polar & nonpolar)
The Carboxylic Acids…
Also
have a carbonyl group (C=O),
but is also attached to a hydroxyl
group (-OH) = “carboxyl” group
general formula: R-COOH
–weak acids (ionize slightly)
Named by replacing -e with -oic
and followed by the word acid
methanoic acid; ethanoic acid
Carboxylic Acids
Abundant
and widely distributed in
nature, many having a Greek or
Latin word describing their origin
–acetic acid (ethanoic acid) from
acetum, meaning vinegar
–many that were isolated from fats
are called fatty acids
The Esters…
General
formula: RCOOR
Derivatives of the carboxylic acids,
in which the -OH from the carboxyl
group is replaced by an -OR from an
alcohol:
carboxylic acid + alcohol ester + water
many
esters have pleasant, fruity
odors- banana, pineapple, perfumes
Esters
Although
polar, they do not form
hydrogen bonds (reason: there
is no hydrogen bonded to a
highly electronegative atom!)
–thus, much lower b.p. than the
hydrogen-bonded carboxylic
acids they came from
Esters
Can be prepared from a
carboxylic acid and an
alcohol; usually a trace of
mineral acid added as catalyst
(because acids are
dehydrating agents)
Esters
Naming?
It has 2 words:
–1st: alkyl attached to single
bonded oxygen from alcohol
–2nd: take the acid name,
remove the -ic acid, add -ate
Oxidation- Reduction Reactions
All
of the previous classes of
organic compounds are related by
oxidation and reduction reactions
What is oxidation-reduction?
–Oxidation: the gain of oxygen,
loss of hydrogen, or loss of e-1
–Reduction: the loss of oxygen,
gain of hydrogen, or gain of e-1
Oxidation- Reduction Reactions
Oxidation
and reduction
reactions (sometimes called
redox) are coupled- one does not
occur without the other
The number of Oxygen and
Hydrogen attached to Carbon
indicates the degree of oxidation
Oxidation- Reduction Reactions
The
fewer the # of H on a C-C
bond, the more oxidized the bond
–Thus, a triple bond is more
oxidized than a double bond and a
single bond
An alkane is oxidized (loss of H) to
an alkene, and then to an alkyne
Oxidation- Reduction Reactions
Loss
of hydrogen is called a
dehydrogenation reaction
–may require strong heating
and a catalyst
Oxidation- Reduction Reactions
Methane
can be oxidized in steps
to carbon dioxide
methane methanol methanal
methanoic acid CO2
the
more reduced (more H) a
carbon compound, the more
energy it can release upon
oxidation
Oxidation- Reduction Reactions
Alcohols
can also be oxidized
into other products
“Dr. Al K. Hall Mr. Al D. Hyde”
Preparing aldehydes from a
primary alcohol is a problem,
because they are then easily
oxidized to carboxylic acids
Oxidation- Reduction Reactions
Benedict’s
test and Fehling’s
test are commonly used for
aldehyde detection –
Polymerization
Addition Polymers
Polymers
are giant molecules,
not small like the ones studied
earlier in this chapter
–examples are plastics
Polymer- large molecule formed
by the covalent bonding of
smaller molecules called
monomers
Polymers from Monomers
Addition Polymers
An
addition polymer forms when
unsaturated monomers react to
form a polymer
–ethene will form polyethylene,
–polyethylene is easy to clean,
chemically resistant- milk bottles,
plastic wrap, refrigerator dishes
High Density Polyethylene
Addition Polymers
Polypropylene
is a stiffer polymer, used
in utensils and containers
Polystyrene is formed from styrene
(phenylethene), and is a poor heat
conductor (styrofoam ® Dow Chemical)
–molded coffee cups and picnic
coolers, insulates homes
Polyvinyl chloride (PVC) used for pipes
in plumbing
Addition Polymers
Polytetrafluoroethene
(PTFE, or
teflon ® DuPont) is very
resistant to heat and chemical
corrosion
–found on nonstick cookware;
coating on bearings and
bushings used in chemical
reactors
Condensation Polymers
Condensation
polymers are
formed by the head-to-tail
joining of monomer units
–usually accompanied by the
loss of water from the
reacting monomers, and
forming water as a product
Condensation Polymers
Ex:
polyethylene terephthalate (PET)
–Dacron (® DuPont), Fortrel (®
Wellman), Polyesters: permanent
press clothing, tire cords
–Sheets of polyester called Mylar (®
DuPont), used as magnetic tape in
tape recorders and computers, as
well as balloons
–Nylon: carpet, fishing line, hosiery
Condensation Polymers
Examples:
–aromatic rings form Nomex (®
DuPont), which is a poor electrical
conductor; makes parts for
electrical fixtures; flame resistant
clothing for race car drivers; flame
resistant building materials
–Kevlar (® DuPont): strong and
flame resistant
Plastic container code system.
CODE
MATERIAL
PERCENT OF
TOTAL
Polyethylene Terephthalate
(PET)
20-30 percent
High Density Polyethylene
50-60 percent
Polyvinyl Chloride (PVC)
5-10 percent
Low Density Polyethylene
5-10 percent
Polypropylene
Polystyrene
All other resins
5-10 percent
5-10 percent
5-10 percent
What Do the Numbers Mean?
1 -- PETE (Polyethylene
terephthalate)
•PET (or PETE) is used in the
production of soft drink bottles,
peanut butter jars...
•PET can be recycled into fiberfill
for sleeping bags, carpet fibers,
rope, pillows...
What Do the Numbers Mean?
2 -- HDPE (High-density
polyethylene)
•HDPE is found in milk jugs,
butter tubs, detergent bottles,
motor oil bottles...
•HDPE can be recycled into
flower pots, trash cans, traffic
barrier cones, detergent bottles...
What Do the Numbers Mean?
3 -- V (Polyvinyl chloride)
•PVC is used in shampoo
bottles, cooking oil bottles, fast
food service items...
•PVC can be recycled into
drainage and irrigation pipes...
What Do the Numbers Mean?
4 -- LDPE (Low-density
polyethylene)
•LDPE is found in grocery bags,
bread bags, shrink wrap,
margarine tub tops...
•LDPE can be recycled into new
grocery bags...
What Do the Numbers Mean?
5 -- PP (Polypropylene)
•PP is used in most yogurt
containers, straws, pancake
syrup bottles, bottle caps....
•PP can be recycled into plastic
lumber, car battery cases,
manhole steps...
What Do the Numbers Mean?
6 -- PS (Polystyrene)
•PS is found in disposable hot
cups, packaging materials
(peanuts), and meat trays...
•PS can be recycled into plastic
lumber, cassette tape boxes,
flower pots...
What Do the Numbers Mean?
7 -- Other
•This is usually a mixture of
various plastics, like squeeze
ketchup bottles,
"microwaveable" dishes...
Timeline of Plastics
1862 – First man-made plastic
1866 – Celluloid makes it’s debut
1891 – Rayon is discovered
1907 – Bakelite is invented
1913 – Cellophane causes the
plastics craze
Timeline of Plastics
1926 – PVC is invented
1933 – Polyethylene is discovered
1933 – Saran makes it’s debut
1938 – Teflon is discovered
1939 – Nylon stockings hit market
1957 – Here comes velcro