NCU_130225_Hu Introduction to Lithium Ion Battery

Download Report

Transcript NCU_130225_Hu Introduction to Lithium Ion Battery

電動車電池及電動車發展現況
南台科技大學機械系
胡龍豪
1
 Introduction to Lithium Ion battery
Electrochemical Mechanism :
Materials :
• Cathode : Li ion storage
• Anode : Li ion accommodation
• Electrolyte : Media for Li ion
transport
• Separator : Cathode and Anode
separated
NCU_130225_Hu
2
Introduction to Lithium Ion Battery
• Industrial Chain of LIB
Materials
(Cathode, anode, electrolyte,
separator, etc.)
可靠度驗證:
Reliability test:3-axis
vibration (ISO 12405)
熱應力分析 :
單電芯
(Battery Cell)
System
電池模組設計
(Module Design)
Thermal stress analysis
結構分析:
Structural analysis
 冷卻系統設計:
Cooling system design
封裝
(PACK)
電池管理系統
(BMU or BMS)
3
Introduction to Lithium Ion Battery
• Cell Types
Cylindrical Cell :18650
Prismatic cell
Coin cell
4
Module and Pack
Module : Cell connection in series
or parallel, BMS
Pack : Sensors, Protection,
Thermal management
5
 Development and Trend of LIB.
Materials
Cathode
•LiFePO4
Aleees,
Tatung,
HIROSE
Chinese
companies
•LiMnO2
SDI
LGC
•LiCoO2
Targray
•NMC
戶田工業
Cell
Module
(BMS)
• Ener 1 (Kr)
• SDI (Kr)
• LCG (Kr)
• Sony (JP)
•
• Ener 1 (Kr)
Anode
•A123 (US)
• DowKokem(US)
•Graphite
• ATL(CN)
Sanyo/Panasonic(JP)
 Luxgen,
Honda, Nissan, •Toyota,
BYD,
China Steel
Lishan Miles
•
A123
(US)
Chemical,
Mitsubish,
GM, Ford, Volvo, BMW
(CN) etc…
• Dow-Kokem(US)
Longtime
•BYD (CN)
Longtime,
• ATL(CN)
……
•MCMB
• Lishan Miles (CN)
• 3C products
•Electrical Vehicle
• Storage system
Osaka gas
•Lithium
Titanate
• E-one_Moli cell
(TW)
•BYD (CN)
•UER tech (TW)
• LICO (TW)
•SIMPLO (TW)
•Dynapack (TW)
……
Pack
(BMS)
• Ener 1 (Kr)
•A123 (US)
• DowKokem(US)
• ATL(CN)
• Lishan Miles
(CN)
•BYD (CN)
• Delta (TW)
……
6
•
The advantages of LIB compared to
High gravimetric Energy density
NiMH
• Low internal resistance
• Long cycle life
• Fast Charging rate
• Low self discharge
Target
• High Voltage
• High Cost (The only drawback)
7
8
 WHY LIB ?
Most use for HEV/PHEV
New potential for EV
Most use for 3C
The only drawback is high cost
9
10
We are still
here
11
Yoshio Ukyo
Power Density
Energy Density
12
Yoshio Ukyo
 EV/E-Bus and the Market
•The design of E-Bus battery module and pack.
13
Introduction to Lithium Ion Battery
• Ansys Analysis of Structure
14
• Vibration test of E-Bus battery module (Based on ISO 12405)
15
Thermal management and PCM(Phase transfer Material)
2C Discharge @ 35 ℃ environment, not reach equilibrium
16
40 C
3 min.
47 C
9 min.
42 C
6 min.
50 C
15 min.
PCM : not for heat dissipation but
maintain the heat inside.
Data from ARTC
 Charge/Discharge test
Current(A), Temperature (C)_1, Voltage(V) vs. Date_Time
17
80
70
69
60
67
40
66
20
65
64
0
12/30/2011
06:43:12
-20
12/30/2011
08:38:24
12/30/2011
10:33:36
12/30/2011
12:28:48
12/30/2011
14:24:00
12/30/2011
16:19:12
Voltage(V)
Current(A), Temperature (C)_1
68
12/30/2011
63
18:14:24
62
61
-40
60
-60
1-001 Current(A)
1-001 Temperature (C)_1
1-001 Voltage(V)
59
Date_Time
The temperature is saturated at 60℃
Thermal image while T1 is 54.74℃
Tesla Model S, Roadster, Chevy, and Prius
Tesla Roaster
Image from Zmotoring .com
Images from greenoptimistic.com
18
 Videos
• Swapping Station
• Concept One Super Electric Car, Rimac
19
Advanced Cathode Materials
The objectives :
• High gravimetric Energy density
• Low internal resistance
• Long cycle life
• Fast Charging rate (High C-rate)
• Low self discharge
• High Voltage
• High Cost (The only drawback)
20
• Different Structures of Cathode Materials
Olive Structure: 1D
Good : Safety and Stable
Bad: Low potential
LiFePO4~3.3V
Spinel Structure:3D
Good : High voltage
Bad : Easy to explode
LiMn2O4 or LiCoO3~3.7V
21
• Graphene/LiFePO4
SEM micrographs of EC-Graphene wrapped Lithium iron phosphate (ECG/LFP)
LFP particle
ECG
(a)
(b)
Test condition:
 CC-CV mode (CV @ 3.8V till 0.05C)
 Voltage range : 2.0V~3.8V ECG: electrochemically exfoliated graphene
 Ambient environment.
Theoretical capacity of LiFePO4 (LFP):170mAh/g
 CR 2032 coin cell
 Anode: Lithium foil
L.H. Hu et.al Graphene Modified LiFePO4 Cathode for Lithium Ion Battery beyond Theoretical Capacity
(Nature Comm.)
22
 Charging and Discharging profile of First cycle @ 0.1C
•Energy density enhanced from 500
Wh/Kg to 700 Wh/Kg or even higher
Specific Capacity enhanced from 150
mAh/g to 200mAh/g or even higher
• 100% coulombic efficiency at first cycle
23
High C-rate performance and mechanisms
Possible Mechanism for excess
capacity:
• Major capacity from Redox reaction
with EC-graphene
24
 Cycle life at continuous test w/o rest
High conc. of ECG on LFP
25
• Plate-like V2O5 cathode material
The morphologies of vanadium oxide can be easily modified by controlling the pH.
Pushpendra et.al Plate-like V2O5 flake for hig performance cathode material for lithium ion battery
submitted to EES
26
• Crystalline structures of vanadium oxide
 The XRD pattern shows that the
crystalline structures of these three
samples remain as pure V2O5
 A right shift and broaden FWHM
from small angle XRD shows a bigger
Interplanar distance of Plate and Rod like
V2O5.
 Based on the Shererr equation, Plate-like
structure has the smallest crystalline
Size.
27
• Electrochemical Test : 1.75V~4V
28