14 2015_Aug_14 CoolC..

Download Report

Transcript 14 2015_Aug_14 CoolC..

Electrical and Thermal
Simulators for Silicon Carbide
Power Electronics
Akin Akturk, Zeynep Dilli, Neil Goldsman,
Siddharth Potbhare, James McGarrity, Brendan Cusack,
Miles Miller-Dickson, Lalitto Sarker, Chris Segni
Our Place in the SiC World
In 2020, SiC will be everywhere….
And these companies will play a role in
that…
And this is why we are
building CoolSPICE-SiC ..
Sectors
Companies
Devices/Components
USCi, Cree, ROHM, Infineon,
Powerex, etc.
Design Tools
CoolCAD
Systems
ARL, ONR, Delta, GE, etc.
Service & Distribution
Pepco, ABB, etc.
CoolCAD
Electronics
–
CoolSPICESiC
Cadence
-Spectre
-Verilog-A
Synopsys
-Saber
SiC Models
Y
N
Simulation Environment
Y
Thermal Modeling
Circuit Design
Co-Design
and Thermal
Electrical
Mathworks
-Simulink
-Simpower
Ansoft
Simplorer
N
N
N
N
Y
Y
Y
Y
N
Y
N
N
N
Y
Y
Y
Y
Y
Y
Y
N
Y
N
N
N
N
N
Mentor
Graphics
Flotherm
Silicon Carbide Device, Module,
System Simulations
SiC Power Module and
System Design
CoolSPICE Electrical
and Thermal Circuit
Simulator
Student version is available online
> ~8000 downloads
15
300
10
200
5
100
0
0
0
5
10
15
20
Time (us)
25
Drain Voltage (V)
Drain Current (A)
http://coolcadelectronics.com/coolspice/
Power MOSFET Parameter Set
Input Signals
to Circuit
Output Signals
from Circuit
Device Parameters:
Standard BSIM, plus
CoolCAD enhancements for
power MOSFETs
Extraction by Matching
Simulation Results to
Measured Data
Agreement with
Temperature-Dependent DC Operation
Solid lines: CoolSPICE simulations
Symbols: Measurements
Agreement with CV Measurements for
C2M0160120D 18A-19A 160 mΩ
First model CGD using QGD
Calculated
Extracted
CGD = dQ / dV
Calculated
Extracted
SiC Device Libraries
CoolSPICE – SiC will include a library for all commercially important SiC components.
Exhaustive library for SiC components!
Manufacturer
Cissoid Neptune
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
GE
Microsemi
ROHM
ROHM
ROHM
ROHM
ROHM
ROHM
STMicroelectronics
Model_No
CHT-PLA8543C
C2M0025120D
C2M0040120D
C2M0080120D
C2M0160120D
C2M0280120
C2M1000170D
CMF10120D
CMF20120D
Internal Part
APT40SM120B
SCH2080KEC
SCT2080KEC
SCT2120AFC
SCT2160KEC
SCT2280KEC
SCT2450KEC
SCT30N120
Device_Type
MOSFET
MOSFET
MOSFET
MOSFET
MOSFET
MOSFET
MOSFET
MOSFET
MOSFET
MOSFET
MOSFET
MOSFET
MOSFET
MOSFET
MOSFET
MOSFET
MOSFET
MOSFET
Have
Voltage Power
in- Current
Rating Rating
house? Rating (A) (V)
(W)
y
10
1200
30
y
90
1200
463
y
60
1200
330
y
36
1200
208
y
19
1200
125
y
10
1200
62.5
y
4.9
1700
69
y
24
1200
152
y
42
1200
150
y
n
40
1200
273
y
40
1200
179
y
40
1200
262
y
29
650
165
y
22
1200
165
y
14
1200
108
y
10
1200
85
y
40
1200
270
Manufacturer
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Cree
Model_No
C2D05120A
C2D10120A
C2M0160120D
C2M1000170D
C3D02060A
C3D02060F
C3D03060A
C3D03060F
C3D04060A
C3D04060F
C3D04065A
C3D06060A
C3D06060F
C3D06065A
C3D08060A
C3D08065A
C3D08065I
C3D10060A
C3D10065A
C3D10065I
C3D10170H
C3D25170H
C4D02120A
C4D05120A
C4D08120A
C4D10120A
C4D15120A
C4D20120A
C4D20120A
C5D50065D
CMF10120D
CSD01060A
Device_Type
Schottky Diode
Schottky Diode
Bodydiode
Bodydiode
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode
Bodydiode
Schottky Diode
Have
in-house?
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
Current
Rating (A)
na
na
na
Power
Voltage
Rating Forward
Rating (V)
(W)
Voltage
5
1200
1.8
10
1200
1.8
na
3.3
na
2
600
1.7
4
600
1.7
3
600
1.7
3
600
1.7
4
600
1.8
4
600
1.7
4
650
1.8
5
600
1.8
5
600
1.8
5
650
1.8
8
600
1.8
8
650
1.8
8
650
1.8
10
600
1.8
10
650
1.8
10
650
14.4
1700
2
26.3
1700
2.5
2
1200
1.8
8.2
1200
1.8
8
1200
1.8
10
1200
1.8
10
1200
1.8
20
1200
1.8
25.5
1200
242
1.8
100
650
1.8
na
3.5
2.2
600
1.8
3kW DC-DC Converter Design
and Development
Prototype a medium power DC-DC converter to:
–
–
–
Provide a test bed for electrical and thermal model verification
Compare and contrast simulation results with measurements in real-world application
Build capability for designing power circuits using Silicon Carbide
Specifications:
•
•
•
•
•
Power: 3kW
Vin: 300V. Vout:600V
Switching frequency:
100kHz to 500kHz
Power devices: Silicon
Carbide MOSFETs and
Schottky Diodes
Architecture: Hard
switched boost
converter
3kW Operation
R-C Snubber
Hall effect sensors for current sensing
Swappable inductors for testing operation at different frequencies
Lumped Thermal Simulations
Objectives:
1.
2.
3.
4.
To provide quick thermal design
and modeling
To provide a datasheet driven
thermal analysis capability
To enable back-of-the-envelope
type calculations
To provide insight into thermal
designs
Methodology:
1.
CoolSPICE – Thermal libraries
2.
CoolSPICE – Thermal simulations
Thermal Components
Typical components:
Conductive, convective, radiative thermal resistors,
thermal capacitors, heat sources, probes, ambients …
Example: Thermal Resistance of
a Multi-Wall Heat Sink
•
Thermal Resistance of Multi-fin Vertical Heat Sink
•
f(Ta,Tw) = {-2e-5 x [(Ta+Tw)/2]2 - 0.0061 x [(Ta+Tw)/2] + 8.3592} x 10-4
•
hc-verticalwall_air = 0.59 x f(Ta,Tw) x [(Tw – Ta)/H]0.25
Watts/degC-cm2,
Rc = 1/hc x A
A is the area of all the walls
A = Aout + Ain
Aout = 2H(L+tbp)
Ain = 2HL(N-1) + HW
N = number of fins
H = height of walls
L = Length of walls
W = Width of back wall
tbp = Thickness of back plate
Example: Thermal Circuit
Example: Thermal Circuit
Steady state
Transient
Distributed Thermal Simulations
Methodology:
Objectives:
1.
2.
To guide thermal design and
1.
modeling and verify simulations
2.
To obtain equivalent thermal
3.
resistance networks for electronic
circuits and assemblies
𝑅𝑡ℎ =
∆𝑇
𝑄
℃
[ ]
𝑊
3-D CAD Modeling
Mesh generation
Finite-element method thermal
simulation
Typical Components
Typical components:
1. Printed circuit board
2. Power semiconductor
devices or modules
3. Passive devices
Mesh Generation
1. Fuse same-material bodies sharing surfaces
2. Create a partition to prevent mesh conflicts
3. Create “volume groups” of bodies sharing material properties and of heat sources
4. Create “face groups” of surfaces to assign individual boundary conditions
5. Mesh generator assigns mesh elements to volume/face groups
Thermal Simulation: Inverter on a PCB
•
Simulation of an
inverter board:
– Four active
components &
a resistor
dissipating power
– Natural convection
described by heat
transfer coefficients
on all surfaces
Thermal Simulation:
300W Power Converter
CAD drawing
Mesh generated by the CAD tool
Thermal solver calculated temperature profile
“Bodies” in the thermal solver
“Boundaries” in the thermal solver
Thermal Simulations
with Airflow and Active Cooling
Forced convection: Modeled by
• Specifying air flow rate
• Solving the Navier-Stokes equation coupled with the heat flow equation
Thermal Simulation:
Silicon Carbide Power Module
Drawn and
meshed inhouse at
CoolCAD:
12 Diodes
16 MOSFETs
291000 Nodes
1236000 Volume Elements
Module design is from: D. Urciuoli, R. Wood, T. Salem, and G. Ovrebo, “Design and
Development of a 400 A, All Silicon-Carbide Power Module” RDECOM presentation
Thermal Simulation:
Silicon Carbide Power Module
Simulation result from: D. Urciuoli,
R. Wood, T. Salem, and G. Ovrebo, “Design
and Development of a 400 A, All SiliconCarbide Power Module” RDECOM
presentation
CoolCAD calculations: Same geometry,
different ambient conditions
TOP:Temperature rise above ambient with
aggressive cooling. All dies consume 75W.
BOTTOM: Temperature rise above ambient
with moderate cooling. MOS dies consume
125W, diodes 75W.
Thermal Simulation:
Details of the Module Structure
Hierarchical drawing,
fusing, partitioning
and meshing steps
and methods are
similar to modeling a
circuit on a PCB.
Brief Explanation of Neutron Effects
in SiC Power MOSFETs
Trapped Proton Belt
4 Earth Radii
High energy neutron flux as a function of altitude.
ABB report on “Failure Rates of HiPak Modules Due to Cosmic Rays”
High Energy Neutrons Create High Energy
Knock-On Atoms in SiC Devices
Knock-on atoms in SiC due to
atmospheric neutrons
Typical Curves After Failure
Measured Cross Sections and FITs
Example failure calculation: FIT@1400 ~103, <104
# of failed devices@1400 using 100 devices =>
102 devices x (103 - 104) fails / 109 hours =
on average 0.1 - 1 device out of 100 will fail in 1000 hours
CoolCAD Silicon Carbide Integrated Circuit Fabrication
(MOSFETs, JFETs, Diodes, Resistors)
•
•
•
•
Layout Design based on custom process rules.
Process Design Kit development for various processes
Lithography mask designs and fabrication
Complementary electrical simulation tools
development: CoolSPICE.
• Silicon carbide, silicon, germanium, etc. fabrication at the Univ. of Maryland’s Maryland
Nanocenter FabLab.
• Silicon carbide high temperature complementary processing at CoolCAD’s facility.
• Silicon carbide in-house developed recipes for dopant activation, oxidation, etching,
metal deposition, contact annealing, etc.
• Silicon carbide Integrated Circuit components fabrication.
W/L = 200/100
Preliminary Data: Dry Ox, no POA
Typical mueff curves for
dry ox dies
W/L = 20/10
Preliminary Data: Nitrous Oxide
mueff curves for
dry ox + N2O POA dies
CoolCAD Silicon Carbide Characterization
(Electrical, Optical, Radiation)
• Layout and lithography mask design based
on custom process rules
CoolCAD UV
Sensor
Competition
Response
>10x
CoolCAD’s sensor technology
provides superior performance
Extremely low leakage for large
sensors ~4.6 square millimeters
• Silicon carbide, fabrication at the Univ. of Maryland’s Maryland Nanocenter FabLab.
• Silicon carbide high temperature complementary processing at CoolCAD’s facility.
• Silicon carbide recipes for dopant activation, oxidation, etching, metal deposition,
contact annealing, etc.
• Silicon carbide sensors fabrication.