Transcript Hsin-I Liu
On-Chip ECC for Low-Power
SRAM Design
Hsin-I Liu
EE 241 Project
5/9/2005
Outline
Introduction to low-power SRAM
Introduction on error correction code
Analysis of data retention voltage in
SRAM
Simulations and results
5/9/2005
EE 241 Project
Low-Power SRAM
Concept: Reduce the standby Vdd to data retention
voltage (DRV)
VTC of SRAM cell inverters
0.4
VDD=0.4V
2
V (V)
0.3
0.2 V =0.18V
DD
0.1
VTC1
VTC2
0
0
0.1
5/9/2005
0.2
V1 (V)
0.3
0.4
EE 241 Project
250
350
SRAM column
200
300
150
250
100
200
50
150
0
0
100
40
5/9/2005
80
SRAM row
120
Histogram of 32K SRAM cells
Modeling DRV
6000
5000
4000
3000
2000
SRAM
Chip DRV
1000
0
100
200
300
400
DRV (mV)
DRV is modeled as i.i.d.
gamma random variable
DRV 60mV+10mVG (5,1)
1
i
g (5,1) (x ) x e x
i 0 i !
i
EE 241 Project
5
i
Error Correction Code
Adding parity check into information
Non-trivial binary code
Easy to encode
Parameters fixed
Hamming code, Golay code
n symbols
Linear block code
Parameters flexible
Reed-Solomon code
5/9/2005
Least parity overhead
EE 241 Project
k information
symbols
n-k parity
symbols
Applying ECC to SRAM
Latency
5/9/2005
In proportional to block size
In this project: Hamming (15,11),
Golay(23,12), and RS(15,11)
Implementation characteristics are wellknown
EE 241 Project
Model Setup
r redundant rows
Memory size: M× N
ECC block size: n
info length: i
Standby cycles: T
M rows
Row redundancy: r rows
ECC
Metrics:
n M r
codec
Eb (
Vdds tan dby 2
Vddactive 2 ) / DRV02
i M
iT
Ob
i info
n symbols
codec
i
5/9/2005
ECC
EE 241 Project
ECC
N columns
ECC
r redundant rows
M rows
Model Analysis
ECC
ECC
i info
n symbols
N columns
ECC
ECC
For certain standby voltage, retention
ability can be modeled as Bernoulli r.v.
For certain pe of a row, pe of a block
can be derived
Inside a block, pe of each cell can be
found by solving binomial distribution
Row redundancy can also be modeled
as binomial r.v.
5/9/2005
EE 241 Project
Results
225
250
215
Standby Voltage
Standby Voltage (mV)
220
200
150
100
Pe=2%
205
Pe=5%
Pe=8%
200
Hamming
50
Pe=1%
210
Pe=10%
RS
195
Pe=15%
Golay
0
190
0
200
400
600
800
1000
1200
0
200
# of cells in a row
5/9/2005
400
600
800
1000
# of cells in a row
EE 241 Project
1200
1400
1600
Results (cont.)
30%
Memory overhead
25%
20%
15%
256
10%
512
1024
5%
0%
0%
2%
4%
6%
8%
10%
12%
14%
16%
Pe in a row
5/9/2005
EE 241 Project
Results (cont.)
Number
of columns
Standby Voltage (mV)
Hamming
Golay
256
201.36
194.78
176.36
512
206.53
198.59
179.26
1024
210.04
201.76
182.12
9.091
22.727
58.333
Hardware
overhead
(gates/bit)
5/9/2005
RS
EE 241 Project
Conclusion
Hamming code introduces the least
overhead
For short waiting time, Hamming code
can reduce Eb from 50% to 2x
As waiting time goes to infinity, ReedSolomon saves the power by 3x
5/9/2005
EE 241 Project