pc2181e-08_lec1 - Particle Physics Group
Download
Report
Transcript pc2181e-08_lec1 - Particle Physics Group
Amplifiers and Feedback 1
Dr. Un-ki Yang
Particle Physics Group
[email protected] or Shuster 5.15
1
Real Experiment
How can we catch
cosmic particle and
measure it’s energy?
2
Real Experiment
Trigger
cosmic ray
scintillator
coincidence
integration
Signal
X10
Amp.
ADC
3
Outline
Aims: to understand how analogue signals are amplified, manipulated,
and how they can be interfaced to digital systems
Prerequisites: 1st-year electronics, and vibration & waves
Lectures: 3 lectures (2 hours per each)
• Nov 10, Nov 17, and Nov 24
Learning outcomes
• To understand the behavior of an ideal amplifier
under negative (positive) feedback
• To be able to apply this to simple amplifier, summer, integrators,
phase shifter, and oscillator
• To understand the limitations of a real amplifier
( gain, bandwidth, and impedance)
• To understand basic methods of analogue-to-digital conversion
(ADC)
4
Lecture notes and references
5
Basic Circuit Theory
Ohm’s Law: V = IR
• V is the potential difference across the resister
• R is the resister (): typically k
• I is the current (A): typically mA
Kirchoff’s Laws
• Conservation of energy: for a closed loop
iVi 0
• Conservation of charge: net charge into a point (node)
i Ii 0
6
Dividers
Voltage Divider
Current Divider
7
AC Circuit
Alternating current (AC) circuits: v(t), i(t)
Consider v(t), i(t) with sinusoidal sources
v(t) V0 cos( t v ), i(t) I 0 cos( t I )
v(t) V0 e j ( t v ) , i(t) I 0 e j ( t I )
Extension of Ohm’s law to AC circuits
v( ,t) Z( )i( ,t),
Z is a generalized resistance: "impedance"
Z is a complex number
Z Z ei
is a phase
8
AC Circuit with Capacitor & Inductance
In AC circuit, capacitance (C) and inductance (L) are
used to store energy in electric and magnetic fields
Capacitance : v = q/C, dv/dt = 1/C dq/dt = i/C
• Source of i and v
• To smooth a sudden change in voltage
• Typically F or pF (farad)
Inductance : v = L di/dt
• To smooth sudden change in current
• Typically H or mH (henry)
9
RC Circuit with Sinusoidal Source
j t
v(t) V0 e , i(t) I 0 e
j t
v(t) Ri(t) 0
Resistive impedance: ZR=R,
• same phase
Capacitive impedance: Zc = 1/jC,
• -/2 phase
Inductive impedance: ZL = jL,
• /2 phase
v(t) q(t) / C 0
v(t) L di(t) / dt 0
10
Capacitor
Circuit with capacitor
v V0 cos t V0 e j t
v q/C
V
C
v(t ) i(t ) / j C
Z j / C
In a DC circuit, inf
it acts like an open circuit
The current leads the voltage
by 90o
i(t)
Z()
-/2 phase
11
RC Low-Pass Filter
R
Vin
C
G
Vout
Vout
1
Vin 1 j RC
0 G( ) Glow 1
G( ) Ghigh
Ghigh
1
j RC
1 1
RC
12
RC Low-pass filter
Low pas filter acts as an integrator at high frequency
R
Vin
C
VIN (t) Ve j t
1
Ghigh
jwRC
Vout
I R IC
Vin Vout
dVout
IR
, IC C
R
dt
Vin Vout
dV
C out
R
dt
if Vin ? Vout (low gain: high )
Vin
dV
C out
R
dt
1
Vout
Vin dt
RC
13
RC High-pass filter
High pass filter acts as a differentiator at low frequency
Vin
R
Vout
Vin
R 1 / j C
j RC
Vout
Vin
1 j RC
Vout
j RC
G
Vin 1 j RC
Vout
0 G( ) Glow j RC
G( ) Ghigh 1
Vout
d
RC VIN at low frequency
dt
14
RC circuits
0
Low-pass
filter
High-pass
filter
1
1
jwRC
high
Vout
1
Vin dt
RC
low
jwRC
1
Vout
d
RC VIN
dt
15
Combined Impedance
ZR
Vin
Z R Z L ZC
R
Vin
R j( L 1 / C)
R
e j
G
R 2 ( L 1 / C)2
Vout
Vin
Vout
1 / C L
R
tan 1
1 / LC : same phase
16
Amplifiers
The amplification (gain) of a circuit
G = VOUT / VIN
Ideal amplifier
• Large but stable gain
• Gain is independent of frequency
• Large input impedance (not to draw too much current)
• Small output impedance
Obtained by “negative feedback”
17
Operational Amplifier
Vout =G0 (V+ - V-) (called as differential amp.)
• Vout = - G0 V- , if V+ =0 : inverting amplifier
• Vout = G0 V+ , if V- =0 : non-inverting amplifier
Amplifier with a large voltage gain (~105)
High Zin (~106 )
Low Zout(<100 )
18
OP Amplifier 741
+15V
V+
V-
Vout
-15V
Many interesting features about OP amplifier
http://www.allaboutcircuits.com/vol_3/chpt_8/3.html
19
Negative Feedback
V
G v, VOUT IN
VINV
Vout
VOUT
OUT
out G00V, V=V
VOUT
An overall gain G is independent of
G0, but only depends on
Stable gain
G0
VIN
1 GO
1
G , if G 0
1
20
Non-inverting Amplifier
G
VOUT
1 R1 R2
,
VIN
R1
if G 0 ? 1
R1
v VOUT
R1 R2
VOUT G0 (v v ), VIN v
VOUT
G0
G
VIN
R1
1 R R G0
1
2
Golden rules: Infinite Gain
Approximation (IGA)
• Small v(=v+- v-): v+=v• Small input currents:
I+=I-=0 (large Zin)
21
Inverting Amplifier
Inverting Amplifier
Golden rule: v+= v(v- is at virtual ground)
Calculate gain!
22
Differentiation
Differentiation circuit
VIN (t) Ve j t
Vin
Vout
Vin
ZC
R 1 / jwC
Vout jwRCVin
d
Vout RC VIN
dt
Golden rule: v+= v(v- is at virtual ground)
Prove this is a differentiation circuit!
How would you configure to make an integration circuit?
23
Summer circuit
Summer Circuit
v- is a virtual ground
Prove that V (V V
OUT
1
2
)
24
Phase shifter
Golden rule: v+= v Calculate a phase shift
25