No Slide Title
Download
Report
Transcript No Slide Title
Amplifiers
BASIC AMPLIFIER
CONCEPTS
Ideally, an amplifier produces an output
signal with identical waveshape as the
input signal, but with a larger amplitude.
vo t Av vi t
Inverting Amplifiers
Inverting amplifiers have negative voltage
gain, and the output waveform is an
inverted version of the input waveform.
Non-inverting Amplifiers
Non-inverting amplifiers have positive
voltage gain amplify the input signals.
Voltage-Amplifier Model
Ri: input resistance Ro: output resistance
Avo: Open loop voltage gain ( vo / vi )
Voltage-Amplifier Model
Ri: input resistance Ro: output resistance
Avo: Open loop voltage gain ( vo / vi )
Ri
vi vs
Ri RS
if Ri , vi vS and ii 0,
then power delivered by vS 0.
1. It will ensure vs is not degraded.
2. It enhances the power efficiency as limited power is
drawn from the signal source.
Voltage-Amplifier Model
Ri: input resistance Ro: output resistance
Avo: Open loop voltage gain ( vo / vi )
RL
vo Avovi
RL Ro
if Ro 0, vo Avovi
it will not reduce the am plified signal.
A zero output resistance will maintain the gain.
Current Gain
io vo RL
Ri
Ai
Av
ii
vi Ri
RL
Power Gain
Po Vo I o
2 Ri
G
Av Ai Av
Pi Vi I i
RL
CASCADED AMPLIFIERS
Av Av1 Av 2
1500
vi 2 200vi1
150vi1
1500 500
100
vo 2 100vi 2
50vi 2 50 150vi1
100 100
7500vi1
Avo=Avo1*Avo2=200*100=20000
Not agree with the calculation
Why? As Ro1≠0, Ro2 ≠0
If Ro1=Ro2=0
1500
vi 2 200vi1
200vi1
1500
100
vo 2 100vi 2
100vi2 100 200vi1
100
Desirable output resistance as small
20000vi1
as possible.
Operational Amplifier
1. Ideal Op-Amp and its analysis
2. Practical Op-Amp and its limitations
3. Application of Op-Amp
IDEAL OPERATIONAL AMPLIFIERS
Power Supply Connection of Op-amp
Characteristics of Ideal Op Amp
Infinite gain for the differential input signal
Infinite input impedance
Zero output impedance
Zero gain for the common-mode input signal
Infinite bandwidth
OP-Amp Model
Ideal OP-Amp
•Rin = ∞,
so that it will not draw any power from
the input signals
•Rout = 0
so that it will not degrade the signal
due to the output resistance
•Avd = ∞
it is to amplify the differential signals
•Avcommon = 0
it is to reject any common mode input
signals
Bandwidth = ∞
so that it can be used for any signal
spectrum
i1
V-
_
i1
i2
i2
+
V+
Ideal op-amp rule
1. No current ever flows into either input terminal.
i1, i 2 = 0
2. There is no voltage difference between the two
input terminals
v- = v+
We call this Summing Point Constraint
Ideal Op-Amp
vs v
vout v
is
, iF
, iin 0
Rs
RF
is iF , is iF 0
vs v vout v
0
Rs
RF
Since, v 0, vout Av o ( v v ) Av o v
v
vout
Av o
vs v vout v
vs v vout v
v
As
0,
0, and v out
Rs
RF
Rs Rs RF RF
Av o
vs
v
v
v
out out out 0
Rs Av o Rs RF Av o RF
vs
v
v
v
v
v
R
( out out out ), If Av o , s out , vout F vs
Rs
Av o Rs RF Av o RF
Rs
RF
Rs
Avc
RF
v
, Also v out 0
Rs
Av o
Avc is the closed loop gain
Negative Feedback Effect
• The effect of the feedback connection from the
output to the inverting input is to force the
voltage at the inverting input to be equal to
that at the non-inverting input.
v- = v+
It is called ;
• summing point constraint, or
• virtual ground concept
Illustration of the principle of summing point constraint
As i- and i+ are both zero, then, i1 = i2
vin
0 vo vo
i1
i2
R1
R2
R2
vo
R2
Avc
vin
R1
INVERTING AMPLIFIERS
vo
R2
Av
vin
R1
Practical Design Difficulty
Design an inverting amplifier with gain -100,
R1 = 50K, then R2 = 5M , too much for real practical resistor
v x vo
i4
R4
Vx
0 v x
vx
i2
R2
R2
0 vx
i3
R3
ii 0
vin
i1
R1
vx
R3
vx
vx
v x vo
i2
, i3
, i4
R2
R3
R4
i2 i 3 i4
vin
vx
i1
i2
R1
R2
v x 0 i2 R2
R2
vin
R1
vx vx vx vo
R2 R 3
R4
R2 1
1
1 vo
vin
R1 R2 R3 R4 R4
v
R
Av o 2
vin
R1
R4 R4
1
R3 R2
Av = -100, R1 = 50K
vo
R2
Av
vin
R1
R4 R4
1
R3 R 2
R4 R4
1
R3 R1
R2 R4
R
8, and 4 10.5
R1 R1
R3
vo
R2
Av
vin
R1
R1 50K , R2 R4 400K
R3 38.1K
NON-INVERTING AMPLIFIER
iNode A
v1 v1 vo
At node A,
0
R1
R2
vin vin vo
As vin v1 ,
0
R1
R2
vin R2 R1vin R1vo 0
vi 0, ii 0, i 0
and vin v1
vin ( R2 R1 ) R1vo
vo ( R2 R1 )
R2
1
Avc
vin
R1
R1
NON-INVERTING AMPLIFIER
iF iS iin
Since ideal op am p, Rin iin 0
v vS v
v
vout v
iS
, iF
, i F iS
RS
RF
v vout v
v
v vS
S out
RS
RF
RS
RF
RF vS RS ( vout vS )
RF vS RS vS RS vout
vout
vS ( RF RS )
R
vS (1 F )
RS
RS
vout
R
Avc (1 F )
vS
RS
Summer
iF i1 i2 i3 ..iN 0
vSj
vS 1
vS 2
vout
i1
, i2
,... i j
.., and i F
RS1
RS 2
RSj
RF
vSj
vS 1 vS 2
vSN
vout
..
..
RS1 RS 2
RSj
RSN
RF
vout
RF
RF
RF
RF
RF
vS 1
vS 2
vS 3 ... vSj ...
vSN
RS1
RS 2
RS 3
RSj
RSN
N
RF
vSi
i 1 RS i
Voltage Follower
vout vS
Differential Amplifier
v1 v vout v
i1 i2 0
R1
R2
v1 v v vout
R1
R2
R2 v1 R2 v R1v R1vout
R1vout R2 v1 R1v R2 v
vout
R2
v v2
v
R1 R2
R2
R2
v1
v v
R1
R1
R2
R2
R2 R2
v1
v2
v2
R1
R1 R2
R1 R1 R2
2
R2
R2
R2
v1
v2
v2
R1
R1 R2
R1 ( R1 R2 )
Common Mode Rejection
_
Vcm
+
_
+
+
Vo
-
Vo
Vcm
Common Mode Voltage Gain
Acm
An op-amp is a differential amplifier. It is desirable to reject
any signal in common to V_ and V+ terminal.
In other words, Acm should be as small as possible.
The quality of rejecting the common mode signal is defined by
CMMR (Common mode rejection ratio) Avo
Avo
Acm
or 20log10
Acm
Common Mode Rejection CMMR
f
v1= 2 + 3 sin10tV
v2= 2V
The common component of
the two input signal is 2V.
It is desirable for the amplifier to amplify the difference
of v1 and v2, that is 3 sin10t, and not to amplify the
common component 2V.
How good the amplifier does to reject the common
component is defined by the CMMR.
OP-AMP IMPERFECTIONS IN THE LINEAR
RANGE
OF OPERATION
Real op amps have several categories of
imperfections compared to ideal op amps.
Real op amps have finite input impedance, nonzero
output impedance and finite open loop gain
Ri ≠ ∞, Avo ≠ ∞, Ro ≠ 0
iin ≠ 0
Bandwidth
Bandwidth = fH-fL
Idea op-amp, the bandwidth is infinity, so that signal at any
frequency can be amplified by the amplifier.
Practical op-amp, the bandwidth is limited. That is, the gain
is not uniform.
The gain at frequency higher than the fBOL is diminished gradually
at a -20dB rate of decline.
The unit bandwidth product is to define how good is the
frequency response of the amplifier, i. e, how wide is it bandwidth.
Unity bandwidth product = Avo*fBOL
LINEAR WAVEFORM DISTORTION
If the gain of an amplifier has a different
magnitude for the various frequency
components of the input signal, a form of
distortion known as amplitude distortion
occurs. Due to bandwidth limitation.
Phase Distortion
If the phase shift of an amplifier is not
proportional to frequency, phase
distortion occurs.
NONLINEAR LIMITATIONS
The output voltage of a real op amp is
limited to the range between certain limits
that depend on the internal design of the op
amp. When the output voltage tries to
exceed these limits, clipping occurs.
Slew-Rate Limitation
Another nonlinear limitation of actual opamp is that the magnitude of the rate of
change of the output voltage is limited.
dvo
SR
dt
DC IMPERFECTIONS