開啟檔案

Download Report

Transcript 開啟檔案

Novel Back-EMF Detection
Technique of Brushless DC Motor
Drives for Wide Range Control Without
Using Current and Position Sensors
IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23,
NO. 2, p.934~940,MARCH 2008
Yen-Shin Lai, Senior Member, IEEE, and Yong-Kai Lin
Adviser : Ming-Shyan Wang
Student :Jin-Mu Lin
Outline
Abstract
 Introduction
 PWM control and problem description
 Proposed technique
 Experimental results
 Conclusion
 Appendix
 References

Abstract

本文提供一個新的反電動勢檢測技術,可以廣範圍的控制。
特點:
1.解決以前只能控制high or low duty的情況。
2.不需要使用任何hall or position sensor=用未激磁相量測到
的端電壓來計算反電動勢的零交越點,產生正確的換相控制。
3.容易使用數位系統來實現=使用FPGA架構來實現BLDC Driver
System。
Introduction

與感應馬達比較,優點:沒有轉子側的銅損。

減少BLDC控制成本的做法=無感測器控制。


這些參考論文使用的方式都使用從量測與dc-link串聯
的 “電阻”產生的資料,重建中性點電壓和終端點電壓。
各參考論文提及:
So…..

為了解決以上的問題,本論文提出一個新的方式
來計算在高速與低速時的反電動勢的零交越點。
PWM control and problem description
The
high-side power device
is controlled by chopper
signal every consecutive
120° in a fundamental period.
The
associated low-side
control signal is shifted by
180° ,as compared to its highside one, to clamp the related
inverter output to the
negative dc-link rail.
Defines the terminal voltages of
three-phase windings

“
” denotes the terminal voltage for the phase connected to the
positive dc-link rail during PWM control period.

“
” indicates the terminal voltage for the phase connected to the
negative dc-link rail.

“
” is the terminal voltage for the
floating phase.
The back-EMF voltage is detected
via the terminal voltage of floating phase.

非激磁相的端電壓公式(1/2)
非激磁相的端電壓公式(2/2)
檢測零交越點在上升、下降的端電壓(1/1)


As shown in Fig. 3, the
terminal voltage of the
floating phase has either
rising edge or
falling edge.
For both, when the
terminal voltage
becomes zero,
the zero-crossing point
occurs.
上升邊緣的端電壓
當PWM ON時
 未激磁相的端電壓可以用(6)導出寫成

(7)
這情況下的零交越點端電壓
(8)
當PWM OFF時
 未激磁相的端電壓就是
(9)
Fig.4
下降邊緣的端電壓
當PWM ON時
 未激磁相的端電壓可以用(6)導出寫成

(10)
這情況下的零交越點端電壓
(11)
當PWM OFF時
 未激磁相的端電壓就是
(12)
Fig.4
低工作率控制下的端電壓理想的波形
Proposed technique
計算:零交越點時間點(>50%)
V

Duty ratio > 50%

By (13), the time instant of
zero-crossing point can be
determined as follows:
計算:零交越點時間點(<50%)

Duty ratio < 50%

By (15), the time instant of
zero-crossing point can be
determined as follows:
Experimental results
Experimental results Duty = 95%
Ch1=voltage;
Ch2 =current.
Experimental results Duty = 95%
Ch1 = voltage;
commutation
signals:
Ch2 = by calculation;
Ch3 = by Hall sensor.
Experimental results Duty = 55%
Ch1=voltage;
Ch2 =current.
Experimental results Duty = 55%
Ch1 = voltage;
commutation
signals:
Ch2 = by calculation;
Ch3 = by Hall sensor.
Experimental results Duty = 45%
Ch1=voltage;
Ch2 =current.
Experimental results Duty = 45%
Ch1 = voltage;
commutation
signals:
Ch2 = by calculation;
Ch3 = by Hall sensor.
Experimental results Duty = 5%
Ch1=voltage;
Ch2 =current.
Experimental results Duty = 5%
Ch1 = voltage;
commutation
signals:
Ch2 = by calculation;
Ch3 = by Hall sensor.
Current waveform from standstill to closed-loop
operation.
Experimental results, speed versus duty, rated
speed = 2500 rpm.
Conclusion




1. the duty can be smoothly controlled from 5% to
95%;
2.讓BLDC無感測控制的想法注入新的ideal。
3.Present a novel back-EMF detection technique to
provide wide duty-ratio range control for BLDCM
drives while not requiring position and current
sensors.
4.Confirm the performance of the presented
technique derived from an FPGA-based system.
APPENDIX

MOTOR SPECIFICATIONS
1.No.of poles=8,
2.rated power=70w,
3.Vdc=24v,
4.Rated=2500rpm
References 1/2









[1] K. Nishimura, “Sensorless Motor Drives,” US Patent, 6 111 372, 2000,(Rohm Co. Ltd.).
[2] W. J. Lee and S. K. Sul, “A new starting method of BLDC motors without position sensor,” in Proc.
IAS Annu. Meeting, 2004, pp. 2397–2402.
[3] Q. Jiang, C. Bi, and R. Hung, “A new phase-delay-free method to detect back EMF zero-crossing
points for sensorless control of spindle motors,” IEEE Trans. Magn., vol. 41, no. 7, pp. 2287–2294, Jul.
2005.
[4] G. J. Su and J. W. McKeever, “Low cost sensorless control of brushless dc motors with improved
speed range,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 296–302, Mar. 2004.
[5] G. J. Su and J. W.McKeever, “Correction to low-cost sensorless control of brushless dc motors with
improved speed range,” IEEE Trans. Power Electron., vol. 19, no. 3, pp. 878–879, May 2004.
[6] S. Ogasawara and H. Akagi, “An approach to position sensorless drive for brushless dc motors,”
IEEE Trans. Ind. Appl., vol. 27, no. 3, pp.928–933, Sep./Oct. 1991.
[7] J. Shao, D. Nolan, and T. Hopkins, “A novel direct back EMF detection for sensorless brushless dc
(BLDC) motor drives,” Proc. IEEE APEC, pp. 33–37, 2002.
[8] SGS-Thomson Microelectronics (Assignee), “Control of a Brushless Motor,” U.S. Patent 5 859 520,
1999.
[9] J. Shao, D. Nolan, M. Teissier, and D. Swanson, “A novel microcontroller-based sensorless
brushless dc (BLDC) motor drive for automotivefuel pumps,” IEEE Trans. Ind. Appl., vol. 39, no. 6, pp.
1734–1740,Dec. 2003.
References 2/2










[10] J. Shao, D. Nolan, and T. Hopkins, “Improved direct back EMF detection for sensorless brushless
dc (BLDC) motor drives,” Proc. IEEE APEC, pp. 300–305, 2003.
[11] Y. S. Lai, F. S. Shyu, and Y. S. Chang, “Novel sensorless PWM-controlledBLDCM drives without
using position and current sensors, filter and center-tap voltage,” Proc. IEEE IECON, pp. 2144–2149,
2003.
[12] Y. S. Lai, F. S. Shyu, and W. H. Rao, “Novel back-EMF detection technique of brushless dc motor
drives for whole duty-ratio range control,” in Proc. IEEE IECON Conf., 2004, pp. 2729–2732.
[13] J. Shao, “An improved microcontroller-based sensorless brushless dc (BLDC) motor drive for
automotive applications,” in Proc. IAS Annu. Meeting, 2005, pp. 2512–2517.
[14] Y. Kang, S. B. Lee, and J. Yoo, “A microcontroller embedded AD converter based low cost
sensorless technique for brushless dc motor drives,” in Proc. IAS Annu. Meeting, 2005, pp. 2176–2181.
[15] Seiko Epson Corp., “Brushless dc Motor Without Position Sensor and Its Controller,” E.P. Patent 0
553 354 B1, 1993.
[16] Tokyo Shibaura Electric Co., “Inverter and Air Conditioner Controlled by the Same,” U.S. Patent 5
486 743, 1996.
[17] STMicroelectronics, “Control of a Brushless Motor,” U.S. Patent 5 859 520, 1999.
[18] Y. S. Lai and Y. K. Lin, “Assessment of pulse-width modulation techniques for brushless dc motor
drives,” in Proc. IEEE IAS Annu. Meeting, Oct. 2006, pp. 1629–1636.
[19] Y. S. Lai, F. S. Shyu, and Y. H. Chang, “Novel loss reduction pulse-width modulation technique for
brushless dc motor drives fed by MOSFET inverter,” IEEE Trans. Power Electron., vol. 19, no. 6,pp.
1646–1652, Nov. 2004.
Thanks for listening!!!