Presentation Title Here

Download Report

Transcript Presentation Title Here

Understanding and Protecting Against Electrical
Overstress (EOS) of Operational-Amplifiers
By Thomas Kuehl – Senior Applications Engineer
Precision Analog – Linear Applications Engineering
This is your IC
This could be your IC after an
electrical overstress event!
Presentation Subjects
• ESD and EOS definitions
• Amplifier input range
• ESD models
• Internal ESD and consequently EOS protection circuits
• Amplifier EOS operating situations
• External EOS protection
ESD and EOS: What’s the difference?
•
Electrostatic Discharge (ESD) – The transfer of electrostatic charge
between bodies or surfaces at different electrostatic potential.
•
Electrical Over Stress (EOS) – The exposure of an item to current or
voltage beyond its maximum ratings.
ESD
High voltage (kV’s)
Short duration event (1-100ns)
Fast edges
Low power
Out of circuit event
EOS
Low voltage >Vs
Longer duration event
Low power
In-circuit event
Two very different environments
Handling and assembly
environments
ESD
PC Board
EOS
-5V bus
V1 5
L1 50n
C1 100n
R2 10k
R1 1k
OP2 !OPAMP
OP1 !OPAMP
-
-
Vout
10V
+
+
0V
+
C2 100n
+
+
VG1
R4 1k
R3 1k
L2 50n
+5V bus
V2 5
The TI data sheet Absolute Maximum Ratings is a good
place to check and assure EOS problems are avoided
Input voltage range of an op-amp
+
+2kV–
+100V
ESD protect region
≈
Safe with Rs
+5.5V
+5.0V
Non-linear input
In-circuit max
positive
Pos Safe
Pos rail
OPA735 low
Drift CMOS
Op-amp
+3.5V
U1 OPA735
-
Rs 1k *
0V
-0.1V
-0.5V
+
Neg rail
Neg safe
+
Input
voltage
CMV input range
Vo
+
C1 100n
Vi 2.5
V1 5
Safe with Rs
-5.0V
≈
-100V– ESD protect region
-2kV
_
In-circuit max
negative
* Selected to limit input current to 10mA max.
ESD Stress Models
R1 1.5k
L1 7.5u
2
+
C1 100p
d (i)  R * di  1 * i  0
2
L dt LC
dt
VG1
ESD model
R
L
C
V
Human Body Model
HBM
1.5 kΩ
7500 nH
100 pF
≥ 2kV
Machine Model
MM
20 Ω
750 nH
200 pF
100 - 200V
Charged Device Model
CDM
20 Ω
5 nH
2-10pF
200V - 1kV
Human Body model
Human Body ESD Model
modeled in TINA Spice
DUT
IC1
2kV
IC L1 7.5u
R1 1.5k SW1
VF1
t
Rdut 10
C2 2p
C1 100p
1.5
T
+
A
1.0
AM1 (Amps)
Rdut is the “on”
resistance of an ESD
protection circuit
500.0m
Rdut = 10 Ohms
0.0
15.0
10.0
VF1 (Volts)
5.0
0.0
0
50n
100n
Time (s)
150n
200n
AM1
Machine Model
Machine ESD Model
modeled in TINA Spice
DUT
IC1
200V
IC L1 500n
R1 10
SW1
VF1
t
Rdut 10
C2 2p
C1 200p
+
4.0
T
A
Rdut = 10 Ohms
2.0
AM1 (Amps)
0.0
Rdut is the “on”
resistance of an ESD
protection circuit
-2.0
40.0
20.0
VF1 (Volts)
0.0
-20.0
0
50n
100n
Time (s)
150n
200n
AM1
CDM - ESD by induction
T 400
Cp: 2p[F]
Cp: 4p[F]
Cp: 6p[F]
Voltage (V)
200
Charge Device Model
modeled in TINA Spice
0
VG1
IC1
IC
L1 5n
R1 20
SW1
VF1
250V
-200
0.0
Rdut 10
C1 10p
2.0n
Time (s)
3.0n
4.0n
2.0n
Time (s)
3.0n
4.0n
T 5.0
2 - 10pF
Cp: 6p[F]
Cp 2p
Cp: 4p[F]
Cp: 2p[F]
+
A
AM1
Current (A)
2.5
Rdut is the “on”
resistance of an ESD
protection circuit
1.0n
0.0
-2.5
-5.0
0.0
1.0n
Common input/output ESD protection circuits
Input steering diodes
CMOS input/output protection
Vdd / Vcc bus
output
pad
C1 20f
Pad/Pin
D2 1N914
D1 1N914
R1 190
R3 74
C1 20f
R1 1k
T4 !NPN
D3 1N914
Vcer input clamp
Rb
SCR
R4 9.4
R4 10.2
Input Pad
input
pad
C1 20f
V-
V-
IC level SCR model
is more complex
D1 PMLL4448T1 Noname
D2 PMLL4448T1 Noname
Vee
R4 9.4
OR
R2 74
-Vdd / Vee bus
Pad
R4 9.4
R4 9.4
V+
R4 9.4
Absoption
circuit
R4 9.4
Pad
R4 19.5
Ouput Pad
input or
output
circuit
Supply clamp circuits
Bipolar BVcer Clamp
NPN bipolar
on high-speed process
V+
Avalanche generating
current - internal or
external source
IS1 1u
T1 !NPN
RB s et by des ign
and process
RB 500
V-
NMOS Clamp
V+
T2 Noname
V+
≈
T3 !NPN
Rsub 500
RB 500
V-
NMOS parasitic
NPN trans istor
V-
ON →
← OFF
NMOS parasitic bipolar transistor
Gate
Drain
(collector)
n
Source
(emitter)
n
IDS
p
IC
Isub
Rsub
Sub (base)
P-sub/epi
A commonly applied ESD protection method
for analog integrated circuits
D3 1N4148
Rs 1k
D1 1N4148
ultra
low leakage
diodes
In+
Output protection
D5 1N4148
V+
Input protection
+
IOP1
V-
D6 1N4148
Rs 1k
D4 1N4148
In-
D2 1N4148
Vo
T1 !NPN
Rb 2k
Power supply
absorption device
INA168 ESD cell layouts
Input pin
ESD2 N-sinker – BL
ESD1 NPN B-E
Supply clamp
NPN transistor /
resistor
Output pin
ESD7 NPN B-E
ESD8 N-sinker – BL
The ESD protection paths
V+ pin at GND
D5 1N4148
D3 1N4148
Rs 1k
+
Vout at
GND
Vo
Rs 1k
ESD
pulse
source
IOP1
D6 1N4148
In-
D4 1N4148
VG1
D2 1N4148
+
In+
D1 1N4148
V+
V-
V- pin at GND
T1 !NPN
Rb 2k
Input overdrive may activate
ESD protection circuits
VG2 unintended
trans ients, noise
impuls es , etc.
V-
U1 OPA364
Vi n+
VG1
-
Vo
TL1
VG2
V+
VG1
VG1 intended
linear range signal
Vp = 2.25V, f = 100Hz
V1 2.5
V+
R3 10k
2.25
0.00
-2.25
1.00
+
+
+
+
T
VG2 500.00m
0.00
3.25
Vin+ 500.00m
-2.25
2.50
V2 2.5
Vo
V-
0.00
-2.50
0.00
C1 100n
5.00m
C2 100n
VG1 + VG2 sum may activate
ESD circuit on peaks
10.00m
Time (s)
15.00m
20.00m
ESD cell paths may be activated during an
EOS event
C2 1u
+
*
L4 10n
D5 1N4148
L2 50n
+
T1 can become a near
short between supplies!
Vout
+
Rs 1k
D3 1N4148
Intended
signal
D1 1N4148
V2 5
-
D6 1N4148
Input
EOS
source
D4 1N4148
VG2
Rs 1k
D2 1N4148
+
VG1
IOP1
T1 !NPN
RL 10k
Rb 2k
RF 10k
RI 1k
V1 5
*
L1 50n
L3 10n
C1 1u
-
+
*may no longer represent a nearzero impedance at high
frequencies
A supply clamp transistor failure during
resulting from an input EOS/ESD event
One channel of RGB
amplifier application
R1 500
R2 500
C2 10u
V-
-
+
TL1
GRN OUT
+
+
GRN IN
R4 75
V+
R3 75
OUT
+
C1 10u
+
OP1 !OPAMP
VG1
R5 2k
TERM
T1 !NPN
V+/V- wall-wart power s upply
without on/off switch
Vcer clamp
transistor
EOS-related CMOS operational-amplifier field failures
•
•
•
TI quad CMOS operational amplifier failing unexpectedly in air conditioner application
TI FA report indicated the operational amplifier die had carbonized material on die and
pin 4 (V+) to pin 11 (V-) short
EOS analysis of the customer application input and output ESD circuits did not reveal
any likely candidates
EOS-related CMOS operational-amplifier field failures
20 Vpk EOS
on V+ line
•
A request for the Field Applications Engineers to observe and monitor the amplifier pins
during the various operational cycles was made and provided
•
They found that a 20 Vpk pulse was appearing on the V+ line during operation of the air
conditioner. The nominal supply voltage was +5 V
•
The EOS was causing either the supply-to-supply ESD clamp to break down, or voltage
breakdown of the amplifier transistor structures
•
A higher voltage operational amplifier and a transient voltage suppressor on the V+ line
were recommended
Input current limiting by external series-R
Where does the 10mA
IOVERLOAD maximum
originate?
Parasitic circuit latch testing
VS1 5
Compliance
Range +/-7.5V
I max 150mA
VCCS1
+
Pi n under
test
+
A
AM1
+
+
VG1
U1 OPA348
+
-
+
Ouput floats
during input
pi n tests
-
I/O hi gh
SW1
+
I/O low
Input pins connected together
during output pin test
VS2 0
Current injection
latch test
The continuous input overload current is set to < 1/10th
the JEDEC maximum latch test current (t ≤ 10ms)
Watch Vin during power up!
Iin excessively high
while supply ramps
T
30.0m
AM115.0m
0.0
3.50
VG1 1.75
0.00
5.00
VG2 2.50
0.00
3.50
VM1 1.75
0.00
0
10m
20m
30m
Time (s)
40m
50m
Instrumentation amplifier input protection
V+
Vi n-
Over-Vol tage
Protection
IOP1
+
R3 60k
R5 60k
IOP3
R2 25k
-
RG 25k
R1 25k
EXT
-
R4 60k
R6 60k
Ref
+
Vbias 0
IOP2
Vbias
V-
A1
+
IS1 10u
Ib Comp 1n
+
A3 +i n
IOP2
A3 -in
+
Vi n+
T1 !NPN
Vd/2 1
C1 6p
R1 25k
RG 25k
Vcm 0
+
Over-Vol tage
Protection
+
+
Vi n+
Vo
Vd/2 1
Over-Vol tage
Protecti on
Vi nT1 Noname T2 Noname D1 1N914
Ext
A2 +
Mirror of
A1circuit
Excessive differential input over-voltage
Possible occurrences
Bipolar input operational amplifier
–
–
R1 500
T 10
V-
U1 OPA227
90%
-
Vo
+
8
+
VG1
R2 1k
V1 15
V+
R3 1k
Input-output
voltage difference
6
SR = 2.3V/us
4
V2 15
V+
Vo
V-
C1 100n
Voltage (V)
+
VG1
When operating an operational amplifier
as a comparator
During slewing
C2 100n
2
10%
0
0.0
1.0u
2.0u
3.0u
4.0u
Time (s)
Plot for illustrative purposes only!
5.0u
OPA277 input-to-input differential
over-voltage protection
modern bipolar op-amps have input clamps
R1 500
V2 15
Iin
Gain stages and bias circuits
20mA
max
T28 !NPN
T41 !NPN
T23 !NPN
Vo
VinRL 1k
T44 !NPN
+
D3 1N914
D2 1N914
D1 1N914
D4 1N914
IS1 100u
Pulse
Vin+
Source
VG1
VG1 = 2VD + (Iin R1) + Vo
V1 15
If VO = 0V, then:
Iin = (VG1 – 2VD) ∕ R1
Input overdrive of CMOS rail-to-rail IO
chopper amplifiers
Back-to-back clamp diodes are inherent and internal to the chopper switch structures
•
•
•
•
•
When Vin exceeds a Vcm maximum Vo is forced to an
output rail level
The op-amp is forced outside of its linear operating range
The feedback loop collapses and an input differential
voltage develops
One clamp diode or the other becomes forward biased and
the input bias current can increase tremendously
This may limit the use of this type of operational amplifier
as a comparator
Overload Recovery
Auto-zero CMOS
Operational-amplifiers
Positive
input
+50mV
0mV
OPA335
Av = -50V/V
0V
+
R1 2k
VG1
Negative
output
R2 100k
≥ -2.5V
U1 OPA335
V-
Stepped from
50mV to 0mV
+
+
+
-
C1 100n
V1 2.5
V2 2.5
C2 100n
V-
Vin ≥ Vs / Gain
VM1
Negative
input
0mV
-50mV
≤ 2.5V
Positive
output
0V
Output inversion during input overdrive
U1 OPA234
+4.5V
Vi n 5Vp-p
+ 2.0Vdc
-
VG1
+
+
+
VM1
+
-
VG1
R1 50
V1 5
C1 10n
-0.5V
+4.5V
VM1
0V
Output inversion
Supply pin over-voltage protection
L1 100u
LOAD
Rs 5
C1 1u
+
VG1
5V Power
supply
T
with an RLC filter
Transient amplitude
effectively reduced
+
VM1
-
10.0
Smoothing a transient
•
RL 1k
1us transient riding
on 5V supply voltage
VG1
VG1 7.5
5.0
5.5
VM1
•
Ringing dependent on
RLC values and load R
•
Amplifier PSRR becomes
important
VM1 5.0
4.5
0
20u
40u
60u
Time (s)
80u
100u
Supply pin over-voltage protection
LOAD
Rs 10
C1 10n
+
VG1
RL 1k
5V Power
supply
+
VM1
Vz = 6.8V
Z1 1N5342
T
Transient voltage suppression (TVS)
diode
• 6.8V- 550V reverse standoff voltage
•Unidirectional & bidirectional models
•Ppk = 1.5kW (10 x 1000us) @ 25C
10.0
5V 1us transient riding
on +5V supply line
VG1
VG1 7.5
5.0
7.0
zener diode used in simulation
no TVS model available
VM1
VM1 5.8
•Cj ≥ 1nF @ 20V
•Littlefuse no. 1.5KE6.8, etc.
4.5
0
20u
40u
60u
Time (s)
80u
100u
Supply pin over-voltage protection
Features
• Multilayer ceramic construction
• Operating voltage range VM(DC) = 5.5 to 120V
• Non-repetitive surge current (8/ 20us)
• Non-repetitive energy (10/ 1000us)
• response time <1ns for zinc oxide
• Inherent bidirectional clamping
• Wider temperature range and flatter response
than solid-state TVS
Externally connected input protection
devices
Transient voltage suppressors
For CMOS, bipolar and SiGe
Features:
Available from 5.6 to 18V
DC working voltage ≤ 18V
AC working voltage ≤ 14V
watch
capacitance
Turn-on-time <1ns
Repetitive spike capability
uA
J
A
pF
Externally connected input protection
devices
Externally connected input protection
devices
Schottky diodes provide
enhanced input protection
V1 5
SD1 BAS40
C1 100n
U1 OPA374
+
+
SD2 BAS40
VG1
R1 5k
+
+
-
R2 5k
VM1
-
Features:
• Forward voltage
VF ≤ 380mV, IF = 1mA
• Forward current
IF = 200mA max (cont.)
• Leakage current *
IR ≤ 100nA, VR = 30V
• Diode capacitance
Ctot ≤ 5pF, VR = 0V
* A small-signal silicon diode (IN4148) will likely turn on at lower voltage than the internal
ESD silicon diode and may exhibit lower leakage current than a Schottky diode.
Externally connected input protection
devices
An important point about added protection devices
in the signal circuit
•
Protection components such as transient voltage suppressors (TVS), diodes
and zener diodes all exhibit capacitance even when biased off
•
The capacitance will vary to some extent with the voltage applied across the
protection device
•
Most often the capacitance does not have a linear capacitance to voltage
relationship (voltage coefficient)
•
This non-linear capacitance to voltage relationship may increase distortion in
the protected circuit
•
It will be most evident in a very low THD circuits, but may not degrade
performance significantly
Power Line Communications (PLC)
EOS environment – IEC61000-4-5
Open-circuit surge pulse test
4kV, 1.2us tfront, 50us thalf-value
PLC – EOS protection
Actual protection scheme will vary with application and layout
High voltage MOV
and low-voltage TVS
clamping
Fast rectifier and
Schottky clamps
The internal output ESD
cell is unlikely to withstand
the open-circuit HV pulse
- latching is probable
In Summary
• EOS and ESD events may activate ESD protection but result
in different outcomes
• Internal ESD circuits may sufficiently handle EOS
• Be aware of unique EOS situations such as power up and
input slewing
• External EOS protection circuits will be required if device
damage is likely to occur without it