AC Power Concepts
Download
Report
Transcript AC Power Concepts
Current Distortion
A distorted current waveform can be decomposed into a set of
orthogonal waveforms, (e.g. by Fourier analysis). The RMS
value of the composite waveform (I) may be computed as the
root-sum-squared of the RMS values of all of the orthogonal
components {Ih}.
I
2
RMS
2
1
2
2
2
2
i t dt I 0 I1 I 2 I 3
TT
o The DC component I0 is usually (but not always) equal to zero.
o The fundamental component, I1 is the only component that
contributes to real power (and only the in-phase component).
o All the other harmonic components contribute to the RMS
harmonic distortion current, Id :
I I I
2
d
2
2
2
3
Current Distortion
v(t ) 2VRMS cos t Fv
Undistorted cosine, Fv = 0
i t 2 I1, RMS cos t F1
Fundamental
2 I 2, RMS cos 2t F 2
2 I 3, RMS cos 3t F3
Harmonics
I RMS I12 I 22 I 32
2I1 cos t F1 2 I1 cos F1 cos t I1 sin F1 sin t
2I P cos t 2IQ sin t
“In-Phase” Current
“Quadrature”
Current
… For the fundamental frequency component (from previous slide):
2I1 cos t F1 2I P cos t 2IQ sin t
RMS of iA (t) + iB (t) I A2 I B2 if iA (t) and iB (t) are orthogonal
…which they are!
I1 I P2 I Q2
I12 I P2 IQ2
As always, we have two ways of looking at this . . .
IQ
I1
RS
IP
I1
P I12 RS
Forehand
Pure
Reactance
G
RP
Pure
B
Reactance
I 2P2
P I P RP
G
Backhand
Current Distortion
+
V
-
IQ
I1
I
ID
(Harmonics)
IP
NonLinearities
G
D VI D
2
I PI P
P = VI
G P I P Q VIQ
G
B
Fundamental
Total RMS Current
Harmonics
I I I I I
2
2
1
2
2
I 2 I P2 IQ2 I D2
2
3
2
4
Apparent Power:
S VIP2 V
QI2 P2DI2Q2 I D2
Total Harmonic Distortion
Total Harmonic Distortion (THD) is defined as the ratio
of the RMS harmonic distortion current ID to the RMS
value of the fundamental component I1 :
ID
THD
I1
thus…
(assuming zero DC)
I 2 I12 I D2
I I1 1 THD
2
THD can be measured using a distortion analyser.
If the form of the current waveform i(t) is known . . .
Determine ID by Fourier Analysis:
2
I RMS
I 02 I12 I D2
Given i(t) having period T, = 2p/T:
2
I D2 I RMS
I 02 I12
Compute IDC and IRMS
T 2
I DC
1
i t dt I 0
T T 2
I
2
RMS
2
1
i t dt
TT
The first Fourier coefficient is:
T 2
I n 1, P
2
j1
jnt
i
t
e
dt
I
e
1, P
T T 2
I I
2
D
2
RMS
I I
2
0
2
1
DPF = cos(
I 1)
Note:
I1
ID
THD
I1
1, P
2
Apparent Power
Apparent power, S, is defined as the product of RMS
voltage V, and RMS current I :
S VI V I1 1 THD2
I1
I
1 THD 2
We now can express Real Power in terms of apparent
power S, DPF and THD :
P VI1 cos F
VI cos F
1 THD2
S
DPF
1 THD2
Power Factor
PS
DPF
1 THD
2
Power Factor is defined as the ratio of real power to
apparent power:
PF
P
DPF
cos F
2
2
S
1 THD
1 THD