2 Lamp - Universal Lighting Technologies

Download Report

Transcript 2 Lamp - Universal Lighting Technologies

Ballast Basics II
Presented by: Your Name HERE
ULT Marketing
© 2013 Universal Lighting Technologies
|
1
Topic Outline

Advanced Ballast Definitions
–

Power Factor, THD, Starting Temperatures, Remote Mounting, & Shut Down Circuits
Standards & Regulations
–
UL Listed & DOE

Lighting Retrofits & Energy Savings

HID & T5HO Examples

Controllable Lighting for Energy Management

Dimming Technology
© 2013 Universal Lighting Technologies
|
2
Power Factor
Power Factor indicates how efficiently the power from the utility is being utilized. The
higher the power factor, the less current is needed to provide the same amount of power.
A high power factor ballast allows for more ballasts on a circuit. Also, utilities have penalties for
facilities with low power factors since it requires more current to be generated.
The formal equation:
PF = Actual Power (Watts)/Apparent Power (Volts x Amps)
Example:
120 Watts of lighting @ 120V with PF = .99
120 Watts of lighting @ 120V with PF = .60
Input Current = 1 amp
Input Current = 1.66 amps
- More current required for the same power
Above .90 ls ‘HIGH’ Power Factor (Highest Possible is 1.0)
© 2013 Universal Lighting Technologies
|
3
Total Harmonic Distortion (THD)
THD is a measurement of the harmonic content in the current a piece of equipment
draws from the power line.
 Current may be drawn at the fundamental frequency (60Hz) or combined with harmonic
currents which are multiples of the fundamental, i.e. 180Hz, 300Hz, and 420Hz (3rd, 5th and 7th
harmonics).

Increased temperatures and interference can greatly shorten the life of electronic equipment.
High Harmonic Values:
 Result in large neutral currents in 3-phase Systems
–Potential for overheating neutral conductors
 Cause Voltage distortion problems
Harmonic Current
30
20
Current
10
0
0
90
-10
180
270
360
In the example shown, the wave shapes are that of
a pure 60Hz sine wave (0% THD) and one of an
input current that has 17% THD. The higher the
distortion value, the more the two wave shapes
become dissimilar.
-20
-30
© 2013 Universal Lighting Technologies
|
4
Total Harmonic Distortions (THD)
System Retrofit Analysis with effect on THD
Lighting System Before Retrofit:
– 2 lamp magnetic ballast with F34T12 lamps
– Ballast THD = 20%, Watts = 74W, I = .65A
– Harmonic Current  .20 x .65 =.13A
New Electronic Lighting System after Retrofit:
– 2 lamp Electronic ballast with F32T8 lamps
– THD = 20%, Watts = 51W, I = .44A
– Harmonic Current  .20 x .44 =.088A
This Retrofit with an Electronic Ballast Provides approximately a 32% Reduction in Harmonic
Current and in Power consumption.
© 2013 Universal Lighting Technologies
|
5
THD: Typical Values
Typical Values for THD include:




Electro Magnetic Ballasts:
ANSI Ballast Requirement:
Universal’s HP Family:
Typical screw-in CFL’s:
Less than 30%
Less than 32%
Less than 10%
Greater than 100%
Typical specified THD Levels are either less than 10% or less than 20%.
Requirements for ballasts to meet ANSI requirements allows for THD values to be just less than 32%.
© 2013 Universal Lighting Technologies
|
6
Starting Temperatures

Minimum temperature starting is both ballast and lamp dependent.
– See ballast label for specifics (standard is 50°F for most magnetic ballasts).
– Energy saving lamps do not function well below 60°F, including the newer 25, 28, and 30-Watt
T8 lamps.
– Remote mounting increases the minimum starting temperature.

Most electronic ballasts are designed for -20°F starting.

Magnetic High Output: -20°F.

In low temperature applications, it is important for the lamps to heat up to generate
sufficient light output.
– Lamp Jackets are typically used in these applications so that the heat that the lamp generates
is used to heat the lamp rather than to dissipate into the outside air.
© 2013 Universal Lighting Technologies
|
7
Remote Mounting
Ballasts are limited in how far they can be mounted from the lamps they are operating.


For Electromagnetic ballasts, larger gauge wire is necessary to compensate for voltage drops
from the leads.
For Electronic ballasts, high frequency interactions between the leads and conduit reduce the
ballast output voltage. For electronic ballasts, a maximum distance is specified by the ballast
manufacturer.
Remote Mounting Distance Definition:
 Maximum allowable length of the ballast lead wire from the ballast to the lampholder.
 Typical remote mounting distances:
– Instant Start: 18’
– Programmed Start 1 & 2 lamp: 20’
– Programmed Start 3 & 4 lamp: 12’
– When operating energy saving lamps: 6’
– Dimming Ballasts: 8’
 Consult specification sheets for specific ballasts.
© 2013 Universal Lighting Technologies
|
8
Shut Down Circuits
End of Lamp Life (EOL)
When lamps with a bulb diameter of T5 or less are operated on high frequency electronic ballasts
without EOL sensing circuitry, one or both of the following scenarios may occur at end-of-lamplife:
1. Glass cracking near lamp base
(The filament opens and touches the glass)
2. Overheating or melting of lamp base or socket
(Lamp rectifies and generates significant heat at the filaments and socket)
Many ballasts now include shutdown circuits that sense when the lamp is at its end-of-life and will
shut down power to the lamps to prevent the undesirable failure modes.
© 2013 Universal Lighting Technologies
|
9
UL Listed
Underwriters Laboratory

UL 935: Ballast Standard
Safety Requirement


Assure proper ratings on labels
–
Lamps – denotes which lamps are approved for use
–
Input current ratings
–
Input & Output Voltages
Requires passing of various tests for safe operation, including….
–
Faults are induced within the ballast to confirm that the ballast fails safely
–
Tests for shock hazard potential during lamp replacements
–
Confirms case temperatures are within limits

Requires 100% production tests for insulation/isolation from internal components and
lead wires
UL is Required for US Market – CSA or cULus for Canada.
© 2013 Universal Lighting Technologies
|
10
Regulations
DOE Ruling in 2005
 Defined Minimum Ballast Efficacy (BEF) levels for high power factor ballasts.
 Affected ballasts for the following applications:
– One and two lamp F40T12 and two lamp F96T12 (120 & 277 volts)
–
–
These new BEF Limits are higher than capable with magnetic ballasts which will speed the conversion to electronic
ballasts for the lighting industry.
Ballasts listed for operating only the energy saving lamps are exempt (F34T12 lamps) .
– Two lamp F96T12/HO
–
These BEF limits can still be met with energy saving magnetic ballasts.
 Implementation dates varied for ballast sales to different channels.
– Fixture manufacturers (OEM’s) July 1, 2005
– Electrical Distributors (Replacement) July 1, 2010
 Ballasts excluded from this law include the following:
–
–
–
–
–
Low Power Factor (<.90) and labeled “For residential use only”
Dimming ballasts
F96T12/HO Ballasts designed for –20° F or less and for use in outdoor signs
Ballasts for F32T8 lamps
Ballasts for F34T12 lamps without F40T12 lamps on the label ( this loophole was closed in 2009).
In July 2010, replacement magnetic ballasts were no longer available from manufacturers for
the high volume T12 applications.
© 2013 Universal Lighting Technologies
|
11
Regulations
New DOE Ruling for 2014

New DOE Linear Fluorescent Efficiency Standard:
–
–


Defined stricter minimum efficiencies using BLE*
Affects nearly all non-dimming ballasts for linear lamps in 120-277 V range




January 13, 2012- became law.
November 2014- all manufacturers must comply.
Commercial IS/RS/PS ballasts that operate 4’ linear, 2’ U-bent, 8’ slimline, or 8’ HO lamps
Sign ballasts
Residential IS/RS/PS ballasts that operate 4’ linear, 2’ U-bent, or 8’ slimline lamps
Ballasts excluded from these requirements:





347V and 480V
Export
Dimming ballasts
T8 ballasts for EMI- sensitive environments
Low ballast factor PS ballasts for 4’ T8 lamps
*BLE is ballast luminous efficiency and will replace BEF as lamp efficiency measurement in 2014.
© 2013 Universal Lighting Technologies
|
12
Ballast Retrofits
Retrofit Energy Savings
Electronic ballasts are commonly used in lighting retrofits where magnetic ballasts with T12 lamps
are removed from lighting fixtures and replaced with electronic ballasts and T8 lamps.
The key reason for this is the significant financial savings that result from these energy saving
retrofits although there are numerous other lighting benefits that are achieved.

To Calculate the financial savings, the following information is needed.
- Existing lighting fixture’s input power
- Replacement system’s input power
- Annual hours of operation
- Utility rate
- Quantity of lighting fixtures

Input power values are available from ballast manufacturers’ catalogs or specification sheets.
© 2013 Universal Lighting Technologies
|
13
Ballast Retrofits
Retrofit Energy Saving Equations:
Energy Savings = Existing Wattage – New Wattage
kW Savings = Energy Savings ÷ 1,000
kWH Savings = (kW Savings) x (Annual Operating Hours)
Annual Utility Savings:
Energy Savings (Watts)
x Annual Operating Hours
x Utility rate ($/kWH)
 1000 (for conversion of units)
Annual Utility savings ( $’s)
© 2013 Universal Lighting Technologies
|
14
Ballast Retrofits
Retrofit Example Continued…
System Lumens Example
Ballast Type
Lamp
Magnetic
F34T12
Electronic
F32T8
Rated Lamp Lumens
x Ballast Factor
x Number of Lamps
2280
x 0.90
x4
2710
x 0.78
x4
System Lumens
8208
8455
148 watts
98 watts
Energy Savings Example
Input Watts
Savings = 50W x 4000 hours per year x $.10/kWH / 1000
Savings = $20 Annual Utility Savings per Fixture
Maximize energy savings by not over-lighting an area!
© 2013 Universal Lighting Technologies
|
15
Ballast Retrofits
Retrofit Wiring Connection - Electromagnetic to Electronic

Magnetic Rapid Start to Electronic Programmed Rapid Start:
–
–
–

No wiring changes for 1 & 2 lamp models.
3 & 4 lamp models will combine lamp pairs.
Two wires connect to each lamp socket.
Magnetic Rapid Start to Electronic Instant Start:
–
–
–
Simple wiring changes.
Lampholders are effectively shorted out.
Fewer connections than rapid start wiring.
© 2013 Universal Lighting Technologies
|
16
Ballast Retrofits
Rapid Start to Instant Start Wiring – 2 Lamp:
Line
Existing leads are tied together and connected to
Yellow
Yellow
new ballast leads which connects both sides of a
BALLAST
Blue
Blue
Red
Red
filament with itself for proper operation.
Magnetic T12 Rapid Start Wiring
Blue
Line
Red
BALLAST
Blue
Yellows
Yellows
Reds
Blues
Electronic T8 Instant Start Wiring
© 2013 Universal Lighting Technologies
|
17
Ballast Retrofits
Rapid Start to Instant Start Wiring – 4 Lamp:
Line
Existing lead pairs from the magnetic
ballasts are tied together and
connected to a single lead of the
same color from new electronic
ballast. One four lamp electronic
ballast can replace two 2-lamp
magnetic ballasts.
Yellow
Yellow
Yellows
BALLAST
Blue
Red
Blue
Red
Reds
Yellows
Blues
Yellows
Reds
Yellows
Blues
Lamps from
1stmagnetic
ballast
Lamps from 2ndmagnetic ballast
© 2013 Universal Lighting Technologies
|
18
Magnetic High Bay HID Lighting
HID Lighting Issues:

High energy consumption
–

Cannot provide immediate light
–
–

HID lamps significantly decrease in lumen output over time.
65% Lumens at 40% of rated life.
Poor Color Rendering Index (CRI) values
–
–

Not conducive to many applications.
Poor lumen maintenance
–
–

Lamps do not light instantly but will take a few minutes to attain full brightness.
HID lamps cannot effectively connect to occupancy sensors because of the warm-up and re-strike delays.
Magnetic HID ballasts generate noise
–

Better than incandescent, but they still use significant amounts of power.
Low CRI values reduces the color quality of the light.
HID lamps color vary over time from lamp to lamp.
Most HID High Bay fixture efficiencies are poor, < 80%
–
Fixtures do not effectively reflect light out.
© 2013 Universal Lighting Technologies
|
19
High Lumen Fluorescent
HID Alternative Lighting Solutions:

Energy efficient


Instant on with no warm-up time



90-95% Lumens at 40% rated life.
Light levels remain fairly consistent over time.
Applications:




Warehouses
Gymnasiums
Big Box Retail
Industrial
Excellent color



Sound rated A, ideal for retail, schools, etc.
Excellent lumen maintenance



Lamps fire immediately with no warm-up time.
Compatible with occupancy sensors for maximum energy savings since there are no warm-up or re-strike
delays.
Quiet operation


Over 30% saving in utility costs over magnetic HID.
CRI values typically 75 to 85.
No color variance or shift over time.
Fixture efficiencies are greater than 90%

New High Bay fluorescent fixtures are extremely efficient compared to the common HID High Bay fixtures.
© 2013 Universal Lighting Technologies
|
20
High Lumen Fluorescent
High Bay Applications:
Note: Fluorescent lamps are very temperature dependent while HID lamps provide fairly constant
light output across all temperatures.


Fluorescent lamps have identified ambient temperatures where they provide maximum light output.
For extreme cold temperatures, fluorescent lamps might not be suitable unless the lamp is jacketed or
the fixture is designed to retain heat.
T5HO Optimal Temperature
T8 Optimal Temperature

Light Output vs. Temperature
35°C (95°F) Ambient
25°C (77°F) Ambient
Rated Light Output

105
100
95
90
85
80
T8 Lamps
T5HO Lamps
75
70
20
25
30
35
40
Ambient Temperature (°C)
© 2013 Universal Lighting Technologies
|
21
T5HO High Bay Fluorescent
T5HO Lamps (F54T5HO):
 Provide the most light with the fewest lamps
– 4-Lamp T5HO fixtures are frequently used to replace 1-400 Watt Metal Halide HID fixture.
– 6-Lamp T5HO fixtures increase light levels but still save energy over 400 Watt fixtures.
 Programmed Start products available
– Ideal for use with occupancy sensors
– Maximizes lamp life in frequently switched applications
 T5HO Lamps are at maximum light levels in 35°C (95°F) ambient temperatures
 Ballasts are available for 120, 277, 347, and 480 volt applications
© 2013 Universal Lighting Technologies
|
22
HID to T5HO Lumen Comparisons
Light Output over Time:

400 Watt Metal Halide fixtures
start with the highest delivered
lumens but due to poor lumen
maintenance, their light levels
drop off significantly over time.

4-Lamp and 6-Lamp T5HO
fixtures light levels remain fairly
constant and at the same time
operate with lower input Watts
Delivered system lumens uses HID fixture
efficiency of .80 & Fluorescent fixture of .92
Less lumen depreciation allows for better designs for specific applications.
© 2013 Universal Lighting Technologies
|
23
T5HO Retrofit Example
Warehouse Conversion: HID to Electronic T5HO:
Additional Benefits:
 Improved lighting
 Uniform illumination
 Color
 Less glare
 Instant-on capabilities
 Ability to control lamps
with occupancy sensors
Fixture Type
# of Fixtures
Fixture
Wattage
Annual
Operating Cost
Existing
Installation
400W Metal
Halide
209
458
$34,460
New Installation
4-Lamp T5HO w/
Programmed
Start Ballast
209
226
$17,004
Savings
$17,456
4500 Annual Operating Hours
$0.10 Utility Rate ($/KWH)
458-226 = 232 Fixture Wattage Savings
x
$0.10
x
4500
÷
1000
=
$104.40
x
209
= $21,819.60
Before
© 2013 Universal Lighting Technologies
Reduction of 48,488 Kilowatts
KWH
Annual operating hours
KW to W conversion
Annual savings per fixture
Fixtures
Annual lighting system savings
After
|
24
T8 High Bay Fluorescent
T8 Lamps (F32T8)
 Most common lamp for electronic ballasts.
– This same lamp is probably used elsewhere in the same facility.
 Variety of lamp options available.
– Colors, CRI’s, life ratings, energy saving lamp options, etc.
 Instant Start and Programmed Start high ballast factor ballasts used for High Lumen
applications.
– Ballast Factor of 1.18 to maximize light output from the lamp.
 T8 Lamps are at Maximum light output at 25°C (77°F) ambient temperature.
 Ballasts are available for 120, 277, 347, and 480 volt applications.
© 2013 Universal Lighting Technologies
|
25
HID to T8 Lumen Comparisons



400 Watt Metal Halide fixtures start
with the highest delivered lumens but
due to poor lumen maintenance, light
levels drop off significantly over time.
4-Lamp and 6-Lamp T8 fixtures light
levels remain fairly constant and at the
same time, operate with lower input
Watts.
6-Lamp fixtures are the common T8
replacement of 400 Watt MH HID
fixtures.
Delivered System Lumens
Light Output over Time:
30,000
Std 400W MH
(458 Watts)
26,000
22,000
6-Lamp T8
(226 Watts)
18,000
4-Lamp T8
(154 Watts)
14,000
10,000
0
2
4
6
8
10
12
14
16
18
20
Operating Hours (1,000's)
Delivered system lumens uses HID fixture
efficiency of .80 & Fluorescent fixture of .92
6-Lamp T8 provides lower initial lumens but higher maintained lumens.
© 2013 Universal Lighting Technologies
|
26
T8 Retrofit Example
Gymnasium conversion from HID to Electronic T8:
Additional Benefits:
 Quiet operation
 Improved color
 Instant-on
 Ability to control lamps with
occupancy sensors
Fixture Type
# of Fixtures
Fixture
Wattage
Annual
Operating Cost
Existing
Installation
400W Metal
Halide
38
458
$4,873
New Installation
6-Lamp T8
38
226
$2,405
Savings
$2,468
3500
Annual Operating Hours
$0.10
$0.08 Utility Rate ($/KWH)
Savings Calculation
458- 226 =
x
x
÷
=
x
=
© 2013 Universal Lighting Technologies
232
$0.10
3500
1000
$81.20
38
$3,085.60
Watts saved/fixture
KWH
Annual operating hours
KW to W conversion
Annual savings per fixture
Fixtures
Annual lighting system savings
|
27
Controllable Lighting for Energy Management

Daylight Harvesting
–
–

Use of skylights and windows allows for natural light to be incorporated as a lighting source.
Dim lights to save energy when natural light is available.
Scheduling
–
–
Control power and light levels automatically.
Reduce levels when allowable to maximize energy savings.
 Peak Load Reduction
–
–
Enable lighting for use to control peak energy consumption.
Incorporate lighting controls to allow for Demand Response events and other utility programs.
© 2013 Universal Lighting Technologies
|
28
Light Level Switching

Light Level switching from 100% power to 50%
–

Provides even illumination in the fixture
–
–

Meets switching requirements (ASHRAE90.1, Title 24, etc.)
Aesthetically pleasant looking
Inboard/Outboard switching creates dark spots and uneven illumination
Incorporates standard wall switches to command the ballast
–
Very intuitive and user friendly
S1
White
Black
S2
Black
Ballast
Input
© 2013 Universal Lighting Technologies
• Both Switches in
OFF position
• 0% Power
• One Switch ON
• 50% Power
• Both Switches ON
• 100% Power
|
29
Analog Dimming
SuperDim™ 0-10 volt analog dimming ballasts operate with industry standard 0 to
10V dimming controls. Every ballast connected to the same low voltage control will
dim to the same level.
SuperDim™ Ballasts feature:

Architectural Dimming levels
–
–




100% - 3%: Compact fluorescent lamps
100%-1%: T8, T5 and T5HO linear lamps
Universal input voltage (120-277 volts)
Programmed rapid start technology
Ideal for applications where preset lighting is desired
THD <10%
© 2013 Universal Lighting Technologies
|
30
Digital Dimming Technology

Ballasts, Modules, and Controls are factory assigned with their own unique digital address.

Digital commands are communicated from wall controls to all components on the lighting circuit
via a 2-wire control loop.
–
–

Digital addresses allow for communication to specific components on the control loop.
Signals from standard 2-wire analog and 3-wire control technologies effect all components connected
to the control loop.
Digital control of ballasts eliminates the need for dimmer panels with fluorescent lighting.
–
The ballast utilizes microprocessors to read commands and control current levels going to the lamps.
DALI (Digital Addressable Lighting Interface) is the Industry Standard.
© 2013 Universal Lighting Technologies
|
31
Digital Dimming Ballasts
DaliPRO® ballasts are designed for use in systems that utilize DALI compatible
controls or building management systems. With DaliPro™ ballasts as part of a
networked lighting system, maximum lighting control is available.
DaliPRO® features:

Digital Addressable Lighting Interface (DALI)
–

For use with DALI compatible controls
–

100% - 3%: Compact fluorescent lamps.
100%-1%: T8, T5 and T5HO linear lamps.
Variety of applications
–
–

Numerous manufacturers with products.
Architectural Dimming levels
–
–

Industry standard protocol for digital dimming.
Single rooms with wall controls.
Networked facilities with Building Management Systems.
Full line of CFL, T5, T5HO & T8 ballasts available
© 2013 Universal Lighting Technologies
|
32
Demand Control Lighting

Communicates to the ballasts over the power line
–
–
–

Designed for use as part of an energy savings strategy for lighting
–
–

Power level ranges from 100% to at least 50%
Not designed for architectural dimming
Control options still evolving
–
–
–

Wireless: removes the requirement to run control wires to each fixture
Controls are connected adjacent to the lighting panel
Retrofit or new construction applications
Local computer control
Daylight harvesting
Incorporate with a Building automation/ Energy management system
Ideal for implementation with a Demand Response System
© 2013 Universal Lighting Technologies
|
33
For Additional Information, please visit our website www.unvlt.com or
use your QR Reader for Smart Phone instant access.
THANK YOU
Website: www.unvlt.com
Nashville Customer Service: (800) 862-8666
Universal Technical Engineering Services: 1-800-BALLAST (1-800-225-5278)
© 2013 Universal Lighting Technologies
||
34
34