S/W x com - EMBLAS project

Download Report

Transcript S/W x com - EMBLAS project

General Note as regads the Methodology of macrophytobenthos
accountability and application of integrated assesment of the state of
the macrophytes for marine enviroment’s quality determination
(calculation methods, quality assessment scales)
Galina Minicheva
Institute of Marine Biology, NAS Ukraine
Email: [email protected]
Skype: galina_minicheva
Properties of the macrophyts under
the monitoring of the coastal marine ecosystems
Positives:
• Structural-functional organization to reflects the first stage of environmental process primary production
• Attached object - provides to assessment of the investigation water area
• Presented by large dominant species, which form an indicatory community Cystoseira, Zostera, Phyllophora
• Sensitive structural-functional organization well reflects the variability of the
environmental conditions
• Long life cycle to present an integrated response on the environmental status
Properties of the macrophyts under
the monitoring of the coastal marine ecosystems
Negatives :
• Submerging of the visual observation with the usage of a higher
technology equipment (diver outfit, underwater camera, ROV and others)
• Expensive methods of sampling
• Destroy the nature stricture of community under the breaking waves on
the upper horizons (lost of biomass)
Monitoring of macrophytes in the Black Sea:
• What are the approaches?
• What methods and indicators used?
• Which manuals have been prepared?
• What needs to be done to improve monitoring correspond to requires of
MFSD?
Assessment approaches of the Macrophytes
Phytocenological Approach
Classical botanic methods
(From the end of the XIX c. to present time)
Morphofunctional Approach
Founders D&M Littler, Ukrainian development
(From 70-th XX c. to present time)
Evaluation Indexes Approach
European Directives : WFD, MSFD
(From beginning XX I c. to present time)
Assessment
Approaches:
Approaches:
• Phytocenological
• Morphofunctional
• Phytocenological
• Morphofunctional
• Evaluation Indexes
Monitoring
Monitoring
Structure-functional
organization of benthic
vegetation
Ecological
Status Class
Phytocenological Approach
Classical Botanic Methods
General phytocenological monitoring parameters :
• Floristic composition (identification guide, check-list)
• Percentage cover of macrophytes on the bottom (underwater survey
method)
• Percentage ratio of species into phytocenouses (laboratory processing)
• Biomass (laboratory processing)
• Size structure of dominants (laboratory processing)
Identification of floristic composition
Identification of floristic composition
• National guidebooks
• International base date
• Checklist_Phytobenthos_RO_BG_TR_RU_UA_2015
(BSC_MISISproject_EMBLASproject)
Features of sampling macrophytes
• Needed visual assessment of macrophytes community
distribution in the biotopes
Sampling on coastal zone
Survey of accounting treks
Processing of the video
Sampling on Research Vessels
Manuals
Compiled by: Galina Minicheva1, Dmitry Afanasyev2,3, Alexander Kurakin1
1 – Institute of Marine Biology, NAS Ukraine (Ukraine), [email protected],
[email protected],
2 - Azov Research Institute for Fisheries, Department of Environmental Studies
(Russia); [email protected]
3 - Southern Federal University, Department of Botany (Russia);
[email protected]
• V.V. Gromov. Methods of underwater phytocoenotic studies. In: Hydrobiological
studies of the north eastern Black Sea. – Rostov. Univ., 1973 – P.69 - 72 .
• А.А. Kalugina – Gutnik. Phytobenthos of the Black Sea. Kiev: Naukova Dumka, 1975.
– 245 p.
• Methods of studying marine phytobentos. In: Guide to methods of biological
analysis of sea water and bottom sediments.- Leningrad: Gidrometizdat, 1980.P.166 – 175.
Morphofunctional Approach
Ukrainian development
The structural-functional organization of aquatic vegetation (S/F) dependence from the
substance and energy stream (Q)
S
Q1
Q2
Q3
F
Main rule of rearrangement a plant community at increase of production process
Under increase the substance and energy stream (Q) the large perennial autotrophic forms with a large talus and
long life cycle were replaced by small filamentous or unicellular forms with a short life cycle and a high
environmental activity
Maine advantage of morphofunctional approach - all vital and size forms of the autotrophies are
estimating by the common universal index –S/Wp (specific surface of the population)
Stages of biological and ecological identification
of species diversity
Species
diversity

Binary nomenclature
(C. Linnaeus, 1761)
Spirulina tenuissima






Cladophora albida
Polysiphonia denudata

Ceramium elegans


Oscillatoria viridis
Kilinia virgatula
Pilaiella littoralis
Urospora penicilliformis
Cystoseira barbata
Fucus serratus
Theory
«r» and «k» selection
(R. MacArthur,
Е. Wilson, 1967)
Coefficient of
environmental activity
(G. Minicheva,
1990)
r - spices
r - spices
r - spices
r - spices
r - spices
r - spices
k - spices
k - spices
k - spices
k - spices
1200
424
270
140
110
85
56
26
9
3
Morphofunctional indices of phytobenthos
Organization levels
Specific surface indexes
Surface indexes
Structure elements
Specific surface of the structure elements
(S/W)se
-
Thallus
(single plant)
Specific surface of the thallus
(S/W)t
-
Population
Specific surface of the population
(S/W)p
Population surface index
SIp
Community
Specific surface of the community
(S/W)cm
Community surface index
SIcm
Floristic grouping of the
region
Specific surface of the floristic grouping
(S/W)fg
Phytobentos surface index
SIphb
Specific surface of the taxonomic section
(S/W)ts
Taxonomic section surface index
SIts
Taxonomic section
Principals measuring of the morphofunctional parameters
for the different morphological types of the macrophytes
SIMPLE CYLINDRICAL
STRUCTURE
ELEMENTS
SINGLE PLANT
POPULATION
COMMUNITY
SIMPLE LAMELLAR
COMPOUND
CYLINDRICAL
MIXED
Morphofunctional monitoring parameters :
• Specific surface of the population (S/W)p
• Specific surface of the community (S/W)cm
• Community surface index (SI cm)
Minicheva G., Zotov A., Kosenko M.
Methodical recommendations on the
determination of a number of
morphofunctional indexes of unicellular and
multicellular forms of aquatic vegetation.
GEF project for recovery of the ecosystem of
the Black Sea. – Odessa. – 2003. – 32 p.
The value of specific surface of the Black Sea
macrophytes’ populations (S/W)p
Species
(S/W)p m2.kg-1
Cystoseira barbata (Good et Wood.) Ag.
6.26 ± 0.40
Laurencia hibrida (DC.) Lenorm.
9.57 ± 0.45
Polysiphonia brodiaei (Dillw.) Grev.
11.38 ± 0.38
Gelidium latifolium (Grev.) Born. et Thur.
12.88 ± 0.80
Coralina officinalis L.
17.06 ± 1.01
Grateloupia dichotoma J. Ag.
20.54 ± 0.99
Ceramium rubrum (Huds.) Ag.
34.72 ± 1.36
Cladophora albida (Huds.) Kutz.
81.75 ± 4.48
Callithamnion granalatum (Ducl.) Ag.)
105.00 ± 8.10
Ectocarpus siliculosus (Dillw.) Lyngb.
123.10 ± 4.80
Kylinia virgatula (Harv.) Papenf.
299.37 ± 20.96
Erythrotrichia carnea (Dillw.) G.
335.74 ± 15.21
International training to determination
of macrophyte’s mophofunctional indexes (Odessa, 2004 )
Black Sea Ecological Program, Project «Black Sea Ecosystem Recovery»
,
ODESA
Prof.
Galina
Miniche
va
Mrs.
Marina
Kosenkо
Mr.
Andrey
Zotov
SEVASTOPOL
NOVOROSSIYSK
CONSTANTA
ODESSA
Dr. Daciana-Georgeta
Sava
VARNA
Mrs. Kristina
Dencheva
ISTANBUL
Dr.
Nataliya
Milchakov
a
Prof.
Ronald
C.
Phillips
Mr.
Volodymy
r
Olexandro
v
Mrs. Biktoria
Teyubova
Dr. Lali
Kukhaleishvili
BATUMI
SEVASTOPOL
NOVOROSSIYSK
CONSTANTA
VARNA
Ms. Elif Ozgur
ISTANBUL
BATUMI
Why is it useful to use additional morphofunctional
parameters of macrophytes under monitoring?
Rearrangement the Mediterranean Basin’s algaecomminity under the eutrophication
Change of Floristic Composition
In the 1990s, as a result of
eutrophication of the northern
Adriatic Sea, the Fucus versoides
community was substituted by the
ephemeral (short cycled) species and
by turf-like Gelidium pussilum mats.
(Munda, 1993)
Change of Ecological activity (S/W)p of
Floristic Composition
• Species of genus Fucus – 3-5 m2.kg-1
• Species of genus Gelidium –15-20 m2.kg-1
• Ephemeral (short cycled) species ≈ 50-100 m2.kg-1.
Estimation of the substituted dominant algae species under the increase of the organic matter and nutrients
concentrations along the North-Western Mediterranean coast (by S. Pinedo, M.Garcia, M. Satta, M.Torres,
E.Ballesteros, 2006) from the position of morphofunctional approach
Loading stage
Genus alga
I
Coefficient of ecological activity
(S/W, m2.kg-1)
Braun alga
Cystoseira
II
~ 10
Red alga
Corallina
III
~ 20
Green alga
Ulva
Enteromorpha
Cladophora
IV
35-40
35-50
40-80
Blue-green
Oscillatoria
Lyngbia
200-800
Change of the morphofunctional portrait
(environmental activity of dominant species)
on the monitoring polygon of the Odessa coast
April
Urospora penicilliformis –
S/W 119 m2.kg-1
Porphyra leucosticta –
S/W 63 m2.kg-1
August
Cladophora vagabunda –
S/W 47 m2.kg-1
Ceramium elegans –
S/W 26 m2.kg-1
Evaluation Indexes Approach
European Directives
WFD, MSFD
Used methodology
Key assessment principles of the
WFD and MSFD
Morphofunctional approach to
estimation of the macrophytes
Estimation of the Ecological Status corresponds to requirements of the WFD and MFSD
Biological Quality Elements:
Macroalgae
Angiosperm
Scale classification:
SC
(Ecological Status
Class)
EQR
(Ecological Quality
Ratio)
High
1
Good
0.75
Moderate
0.5
Poor
0.25
Bad
0
Ecological Evaluation Index (EEI)
is the main parameter
for estimation of the water ecosystem ecological status
EEI can be expressed with a classical or morphofunctional
parameters of the macroalgae assessment
Requirements to the indicators which are used as EEI:
• Reflection of the basic ecological function of Biological Quality Elements
• Sensitiveness to the anthropogenic load
• Comfortable for monitoring
Possible options of the macrophytes indexes as EEI choice
Concept
Sours
Index
Property
Classical botany
Morphological and functional
groups
Surface parameters
(Morphofunctional approach)
Marine Strategy Framework
Directive
DIRECTIVE 2008/56/EC OF THE
EUROPEAN PARLIAMENT AND
OF THE COUNCIL (2008)
Orfanidis S, Panayotidis P, Stamatis
N (2001,2003); Orfanidis S,
Panayitidis P, Ugland K (2011)
Minicheva G (1998); Minicheva G,
Zotov A, Kosenko M (2003)
ANNEX II
Characteristic for angiosperm and
macroalgae:
- Species composition
- Biomass
- Annual/seasonal variability
Coverage value of the:
- ESG I
(k-selected species)
(IC, IB, IA)
- ESG II
(r-selected species)
(IIB, IIA)
- (S/W)p – absolute value for
dominant species
- (S/W)x – mathematical mean
value for floristic composition
- (S/W)Σ – summarized value for
floristic composition
Reflected the biological
structure
Reflected the ecological function
on a high-quality level
Reflected the ecological function
on a quantitative level
High-quality and quantitative approaches of the macrophytes parameters’
determination for ЕЕI
Species
Chondrus
Lithophyllum
Phyllophora
Systoseira
Zostera
Dillophys
Gelidium
Padina
Corallina
Ceramium
Chaetomorpha
Ulva
Bryopsis
Cladophora
Bangia
Callithamnion
Ectocarpus
Ecological Status Group
(S. Orfanidis, P. Panayitidis,
K. Ugland, 2011)
Environment activity (specific surface of
population, S/Wp –m2.kg-1)
(G. Minicheva, 1998,2004)
IC
IC
IIA
IA
IB
IIA
IIA
IB
IIB
IIB
IIB
IIB
IIB
IIB
IIB
IIB
IIB
3.2
4.1
7.5
9.5
10
11
14
16
24
26
32
36
47
75
85
130
160
Marine Ecological Journal
Minicheva G. 2013. Use of the Macrophytes Morphofunctional
Parameters to Asses Ecological Status Class in Accordance with the
EU WFD. Marine Ecological Journal. - Vol.XII, № 3. –P. 5-21.
Morphofunctional indexes of macrophytobentos
for to expressed the EEI
• Three Dominants Activity , S/W3Dp
average value of the first Three Dominant Populations specific surface
• Community Activity (average), S/Wx com
average value of the all populations specific surface in the Community
• Phytosenouces Activity, S/Wph
weighted factor of species (by biomass or cover) with different
ecological activity in the phytosenouces;
• Phytosenouces Surface Index, Siph
total value of the phytosenouces algae surface
Calculation formulas for the morphfunctional parameters
Indexes
Three Dominants Activity , S/W3Dp
Average Species Activity, S/Wx
Calculation formula
S / W3 DP
3( S / W )


pi
S / Wxcom
(S / W )


pi
3ni
ni
S / W ph   (
B
 ( S / W ) pi )
pi
or
Phytosenouces Activity, S/Wph
S / W ph   (
Phytosenouces Surface Index, SIph
B pi  100%
Ppi  100%
 Ppi
 ( S / W ) pi )
SI ph   ( B pi  ( S / W ) pi )
Comparison of advantages and disadvantages
of macrophytes’ morphofunctional indicators
Indicator
Advantages
Disadvantages
- Efficient for comparative express-assessment of
ecosystems with different floristic composition.
- Low level of labour input.
- Low probability of computation error.
- Low level of user’s qualification.
- High sensitivity for temporal (seasonal, long-period)
monitoring of ESC in water bodies with simplified species
composition.
- Characteristics of artificial phytosystem (only first three
dominants).
- Low sensitivity for short-period (seasonal) monitoring of
ESC for water bodies with perennial dominants.
Phytocenosis
Ecological Activity,
S/Wph
- Characteristics of natural phytosystem (phytoconosis –
basic unit of vegetation).
- High sensitivity for spatial and temporal monitoring.
- High level of labour input.
- Lack of databases (impossibility of recalculation of
historical databases on structural parameters).
Phytocensis Surface
Index, SIph
- Characteristics of natural phytosystem (phytocenosis –
basic unit of vegetation).
- High sensitivity for spatial and temporal monitoring.
- Possibility of historical databases recalculation on
structural parameters.
- High level of labour input.
- High probability of computation error
(loss of biomass on upper horizons).
Three Dominants
Ecological Activity,
S/W3Dp
Average Species
Ecological Activity,
S/Wx
- High level of labour input.
- High probability of computation error.
- High level of user’s qualification.
Quality assessment scales for identification of the Ecological Status
Class of coastal areas of the Black Sea salinity within 12-17 ‰
ESC
EEI range
(S/W)3Dp, m2.kg-1
High
(S/W)3Dp < 15
EQR
≥ 0.82
(S/W)x , m2.kg-1
EQR
SIph , units
EQR
(S/W)x < 60
≥0.98
SIph < 25
≥ 0.93
Good
15 ≤ (S/W)3Dp ≤ 30
0.54
60 ≤ (S/W)x ≤ 80
0.79
25 ≤ SIph ≤ 40
0.61
Moderate
31 ≤ (S/W)3Dp ≤ 45
0.37
81 ≤ (S/W)x ≤ 120
0.58
41 ≤ SIph ≤ 55
0.41
Poor
46 ≤ (S/W)3Dp ≤60
0.25
121 ≤ (S/W)x ≤200
0.17
56 ≤ SIph ≤90
0.22
Bad
(S/W)3Dp > 60
≥0
(S/W)x > 200
≥0
SIph > 90
≥0
Quality assessment scales for identification of the Ecological Status
Class of transition zone of the Black Sea salinity less 12 ‰
EEI
ESC
(S/W)3Dp,
m2·kg-1
EQR
(S/W)x, m2·kg-1
EQR
SIph, unit
EQR
High
(S/W)3Dp < 50
≥ 0,87
(S/W)x < 90
≥ 0,88
SIph < 20
≥ 0,71
Good
50 ≤ (S/W)3Dp ≤ 80
0,79
90 ≤ (S/W)x ≤ 150
0,73
20 ≤ SIph ≤ 50
0,39
Moderate
80 ≤ (S/W)3Dp ≤ 260
0,35
150 ≤ (S/W)x ≤ 350
0,33
50 ≤ SIph ≤ 70
0,23
Poor
260 ≤ (S/W)3Dp ≤ 360
0,16
350 ≤ (S/W)x ≤500
0,14
70 ≤ SIph ≤ 100
0,05
Bad
(S/W)3Dp > 360
≥0
(S/W)x > 500
≥0
SIph > 100
≥0
Spatial monitoring the Ecological Status Class on basis:
Three Dominants Ecological Activity, S/W3Dp
Seasonal monitoring the Ecological Status Class on basis:
Average Species Ecological Activity, S/Wx
Ecological Evaluation Index (S/Whp)
80
70
60
50
40
30
20
10
0
Long-term monitoring the Ecological Status Class on basis:
Phytocensis Surface Index, SIph
40
35
25
20
15
Oct-14
Dec-14
Jun-14
Aug-14
Apr-14
Feb-14
Oct-13
2014
Dec-13
Jun-13
Aug-13
Apr-13
Feb-13
Oct-12
Dec-12
Jun-12
Aug-12
Apr-12
Feb-12
Oct-11
Dec-11
Jun-11
Aug-11
2013
Apr-11
2012
Feb-11
+10%
2011
Oct-10
-18%
2010
Dec-10
-18%
Jun-10
+45%
Aug-10
0
Jan-10
5
May-10
10
Mar-10
Flow, km
3
30
Month
- monthly norms;
- fact;
- norm of 1981-2010;
- annual averages
Format protocol station for calculation of the morphofunctional EEIs
Description:
Square of frame: 0,01 м2
Covering, %: 95
Frame №1
Number
Population
Frame №2
Population
Frame №3
Phytocenosis
Biomass
Biomass
Three
on
Surface Biomass Surface Frequency
Phytocenos
S/Wx m2∙kg-1
of
Surface Biomass of Surface Biomass of
Dominant Dominants overgrow Average
Index
of
Index of
of
is Surface
populatio Index population Index (SIp), populations
cooficient Ecological thБиома biomass,
(SI
),
populatio
population
occurrence,
Index
p
ns (Bpi), (SIp), units s кg∙m-2
units
кg∙m-2
(Dp)
Activity сса на
кg∙m-2
-2
units
ns
кg∙m
(SI
)
,
units
(P)
%
(SI
p
ph), units
кg∙m-2
(S/W3Dp) заросли
кg∙m-2
1
Enteromorpha intestinalis (L.)
Link.
35,15±1,04
0,089
3,13
0,148
5,2
0,064
2,25
0,1
3,53
100
18,788294
2
Enteromorpha linza (L.) G. Ag.
45,52±1,79
0,355
16,16
0,288
13,11
0,103
4,69
0,249
11,32
100
33,645208
3
Ceramium elegans Ducl.
30,5±1,16
0,05
1,53
0,007
0,21
0,21
6,41
0,089
2,72
100
16,492423
89,84±5,41
0,002
0,18
-
-
-
-
0,002
0,18
33
2,4372115
534,8±32,98
+
-
-
-
-
-
+
-
33
147,16±8,48
0,496
20,99
0,443
18,53
0,377
13,34
4
5
Cladophora sericea (Huds.)
Kutz.
Kylinia secundata (Lyngb.)
Papenf.
Phytocenosis
37,06±1,33
0,439
0,417
17,62
Tasks for the practical training:
- Demonstration the measuring the morphofunctional
parameters
- Treatment the protocol format calculation of the EEIs
- Training for identification the Ecological Status Class
- Dispensing the intercalebration samples
Before meeting with the
macrophytobenthos experts
on the practical training
February 24!