Transcript GAYA
PENJUMLAHAN GAYA
TUJUAN PEMBELAJARAN:
• Mahasiswa dapat menentukan besar
dan arah resultan dari beberapa gaya
dengan metode analitis.
• Mahasiswa dapat menentukan besar
dan arah resultan dari beberapa gaya
dengan metode grafis.
1
Review
PRINSIP DASAR
Dalam Mekanika
1. Hukum PARALELOGRAM dalam
2.
3.
4.
5.
6.
penjumlahan gaya
Prinsip TRANSMISIBILITAS
Hukum NEWTON 1
Hukum NEWTON 2
Hukum NEWTON 3
Hukum GRAFITASI NEWTON
2
Sistem Satuan
• Four fundamental physical quantities. Length, Time, Mass, Force.
• We will work with two unit systems in static’s: SI & US Customary.
Bagaimana konversi dari SI ke US atau sebaliknya ?
3
GAYA
Apakah gaya itu ?
4
Menyusun atau menjumlahkan gaya
dimaksudkan untuk menentukan resultante (R),
dengan kata lain dua buah gaya atau lebih
dapat digabung menjadi satu gaya pengganti
yang disebut resultante (R).
5
Dapat dilakukan dengan 2 cara
Cara lukisan
Cara hitungan
6
APPLICATION OF VECTOR
ADDITION
There are four
concurrent cable forces
acting on the bracket.
How do you determine
the resultant force acting
on the bracket ?
7
Addition of Vectors
• Trapezoid rule for vector addition
• Triangle rule for vector addition
C
B
C
• Law of cosines,
R 2 P 2 Q 2 2 PQ cos B
R PQ
• Law of sines,
B
sin A sin B sin C
Q
R
P
• Vector addition is commutative,
PQ Q P
• Vector subtraction
8
Sample Problem
SOLUTION:
• Trigonometric solution - use the triangle
rule for vector addition in conjunction
with the law of cosines and law of sines
to find the resultant.
The two forces act on a bolt at A.
Determine their resultant.
9
Sample Problem (Lanjutan)
• Trigonometric solution - Apply the triangle rule.
From the Law of Cosines,
R 2 P 2 Q 2 2 PQ cos B
40N 2 60N 2 240N 60N cos155
R 97.73N
From the Law of Sines,
sin A sin B
Q
R
sin A sin B
Q
R
sin 155
A 15.04
20 A
35.04
60N
97.73N
10
ADDITION OF SEVERAL VECTORS
• Step 1 is to resolve each force
into its components
• Step 2 is to add all the x
components together and add all
the y components together. These
two totals become the resultant
vector.
• Step 3 is to find the magnitude
and angle of the resultant vector.
11
Example of this
process,
12
You can also represent a 2-D vector with a
magnitude and angle.
13
EXAMPLE
Given: Three concurrent forces
acting on a bracket.
Find: The magnitude and
angle of the resultant
force.
Plan:
a) Resolve the forces in their x-y components.
b) Add the respective components to get the resultant vector.
c) Find magnitude and angle from the resultant components.
14
EXAMPLE (continued)
F1 = { 15 sin 40° i + 15 cos 40° j } kN
= { 9.642 i + 11.49 j } kN
F2 = { -(12/13)26 i + (5/13)26 j } kN
= { -24 i + 10 j } kN
F3 = { 36 cos 30° i – 36 sin 30° j } kN
= { 31.18 i – 18 j } kN
15
EXAMPLE (continued)
Summing up all the i and j components respectively, we get,
FR = { (9.642 – 24 + 31.18) i + (11.49 + 10 – 18) j } kN
= { 16.82 i + 3.49 j } kN
y
FR
FR = ((16.82)2 + (3.49)2)1/2 = 17.2 kN
= tan-1(3.49/16.82) = 11.7°
x
16
Sample Problem
SOLUTION:
• Resolve each force into rectangular
components.
• Determine the components of the
resultant by adding the corresponding
force components.
Four forces act on bolt A as shown.
Determine the resultant of the force
on the bolt.
• Calculate the magnitude and direction
of the resultant.
17
Sample Problem (cont’)
SOLUTION:
• Resolve each force into rectangular components.
force mag
x comp
y comp
129.9
75.0
F1 150
27.4
75.2
F2
80
110.0
F3 110
0
96.6
25.9
F4 100
Rx 199.1 R y 14.3
• Determine the components of the resultant by
adding the corresponding force components.
• Calculate the magnitude and direction.
Ry 14.3 N
tan
4.1 4.1
Rx 199.1 N
R
14.3 N
199.6 N
sin 4.1
18
READING QUIZ
1. The subject of mechanics deals with what happens to a body
when ______ is / are applied to it.
A) magnetic field
B) heat
D) neutrons
E) lasers
C) forces
2. ________________ still remains the basis of most of today’s
engineering sciences.
A) Newtonian Mechanics
B) Relativistic Mechanics
C) Euclidean Mechanics
C) Greek Mechanics
19
READING QUIZ
3. Which one of the following is a scalar quantity?
A) Force B) Position C) Mass D) Velocity
4. For vector addition you have to use ______ law.
A) Newton’s Second
B) the arithmetic
C) Pascal’s
D) the parallelogram
20
CONCEPT QUIZ
5. Can you resolve a 2-D vector along two directions, which
are not at 90° to each other?
A) Yes, but not uniquely.
B) No.
C) Yes, uniquely.
6. Can you resolve a 2-D vector along three directions (say
at 0, 60, and 120°)?
A) Yes, but not uniquely.
B) No.
C) Yes, uniquely.
21
ATTENTION QUIZ
7. Resolve F along x and y axes and write it in
vector form. F = { ___________ } N
y
A) 80 cos (30°) i - 80 sin (30°) j
x
B) 80 sin (30°) i + 80 cos (30°) j
C) 80 sin (30°) i - 80 cos (30°) j
30°
F = 80 N
D) 80 cos (30°) i + 80 sin (30°) j
8. Determine the magnitude of the resultant (F1 + F2)
force in N when F1 = { 10 i + 20 j } N and F2 =
{ 20 i + 20 j } N .
A) 30 N
B) 40 N
D) 60 N
E) 70 N
C) 50 N
22
23