MollyHungEmilyROTMOT
Download
Report
Transcript MollyHungEmilyROTMOT
Rotational Motion
Emily Burns
Molly McGeady
Hung Nguyen
Definition
Rotational motion- the measure of an
object that is making a circular or
spinning motion.
Angular
Angular displacement
Angular displacement—change in the angle as the object
rotates.
2pi(rad)
Distance given by d=r(angle)
Angular velocity
Angular velocity—angular displacement divided by the time
taken to make the displacement.
W=(change in angle)/(change in time)
Angular acceleration
Angular acceleration—defined as the change in angular
velocity divided by the time required to make the change.
A=(change in w)/(change in time)
Rotational Dynamics
Lever arm—
perpendicular distance
from the axis of rotation
to the point where the
force is exerted.
L=r(sin*angle)
R—distance from the axis
of rotation.
Change—angle between
the force and the radius
from the axis of rotation to
the point where the force
is applied.
Torque—measure of
how effectively a force
causes rotation.
T=Fr(sin*change)
Torque is equal to the
force times the lever arm.
The Moment of Inertia
Moment of inertia—resistance to rotation.
I=m(r^2)
The moment of inertia of a point mass is
equal to the mass of the object times the
square of the object’s distance from the axis
of rotation.
Rotating Frames of
Reference
Motion is important to us because the
Earth rotates. (DUH!)
The effects of the rotation of Earth is too
small to be notice in a classroom or lab.
Significant influences on the motion of
the atmosphere, and therefore on climate
and weather.
Centrifugal and Centripetal
Force
Centrifugal force is
used for two different
concepts.
Centrifugal force is one
of the fictitious forces
that appears to act on an
object when its motion is
viewed from a rotating
frame of reference.
Magnitude of centripetal
force is F=mv2/r.
Force that maintains
circular motion is
centripetal force.
Coriolis Force
Coriolis effect is an
apparent deflection
of a moving object in
a rotating frame of
reference.
Centrifugal and
Coriolis force are not
real forces.
Newton’s Second Law for
Rotational Motion
States that the angular acceleration is
directly proportional to the net torque and
inversely proportional to the moment of
inertia.
A= T(sub net)/I
The angular acceleration of objects is equal
to the net force torque on the object, divided
by the moment of inertia.
The End
Thank you for watching!