Chapter 6: Energy
Download
Report
Transcript Chapter 6: Energy
Chapter 6
Conservation of Energy
Conservation of Energy
• Work by a Constant Force
• Kinetic Energy
• Potential Energy
• Work by a Variable Force
• Springs and Hooke’s Law
• Conservation of Energy
• Power
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
2
The Law of Conservation of Energy
The total energy of the Universe is
unchanged by any physical process.
The three kinds of energy are:
kinetic energy, potential energy, and rest energy.
Energy may be converted from one form to another or
transferred between bodies.
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
3
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
4
Work by a Constant Force
Work is an energy transfer by the application of
a force.
For work to be done there must be a nonzero
displacement.
The unit of work and energy is the joule (J).
1 J = 1 Nm = 1 kg m2/s2.
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
5
Work - Example
Only the force in the direction of the displacement that does
work.
An FBD for the box at left:
F
rx
y
rx
N
w
x
F
The work done by the force F is:
WF Fx rx F cos x
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
6
Work - Example
The work done by the normal force N is: WN 0
The normal force is perpendicular to the displacement.
The work done by gravity (w) is: Wg 0
The force of gravity is perpendicular to the
displacement.
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
7
Work - Example
The net work done on the box is:
Wnet WF WN Wg
F cos x 0 0
F cos x
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
8
Work Done
In general, the work done by a force F is defined as
W Fr cos
where F is the magnitude of the force, r is the magnitude
of the object’s displacement, and is the angle between F
and r (drawn tail-to-tail).
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
9
Work - Example
Example: A ball is tossed straight up. What is the
work done by the force of gravity on the ball as it
rises?
y
r
FBD for
rising ball:
x
w
MFMcGraw
Wg wy cos 180
mgy
Ch06 - Energy - Revised: 2/20/10
10
Inclined Plane-V Constant
A box of mass m is towed up a frictionless incline at constant speed.
The applied force F is parallel to the incline.
y
Question: What is the net work done on the box?
N
F
F
x
An FBD for
the box:
Apply Newton’s 2nd Law:
MFMcGraw
F
F
w
x
F w sin 0
y
N w cos 0
Ch06 - Energy - Revised: 2/20/10
11
Inclined Plane-V Constant
Example continued:
The magnitude of F is:
F mg sin
If the box travels along the ramp a
distance of x the work by the force F is
WF Fx cos 0 mgx sin
The work by gravity is
Wg wx cos 90 mgx sin
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
12
Inclined Plane-V Constant
Example continued:
The work by the normal force is:
WN Nx cos 90 0
The net work done on the box is:
Wnet WF Wg WN
mgx sin mgx sin 0
0
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
13
Inclined Plane-Acceleration
Example: What is the net work done on the box in the
previous example if the box is not pulled at constant speed?
F
F w sin ma
x
F ma w sin
Proceeding as before:
New Term
Wnet WF Wg WN
ma mg sin x mgx sin 0
ma x Fnet x
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
14
Kinetic Energy
1 2
K mv
2
is an object’s translational
kinetic energy.
This is the energy an object has because of its
state of motion.
It can be shown that, in general
Net Work = Change in K
Wnet K .
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
15
Kinetic Energy
Example: The extinction of the dinosaurs and the majority of species on
Earth in the Cretaceous Period (65 Myr ago) is thought to have been
caused by an asteroid striking the Earth near the Yucatan Peninsula. The
resulting ejecta caused widespread global climate change.
If the mass of the asteroid was 1016 kg (diameter in the range of 49 miles) and had a speed of 30.0 km/sec, what was the asteroid’s
kinetic energy?
1 2 1 16
K mv 10 kg 30 103 m/s
2
2
4.5 10 24 J
2
This is equivalent to ~109 Megatons of TNT.
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
16
Gravitational Potential Energy
Part 1- Close to Earth’s Surface
Potential energy is an energy of position.
There are potential energies associated with different
forces. Forces that have a potential energy associated
with them are called conservative forces.
In general Wcons U
Not all forces are conservative, i.e. Friction.
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
17
Gravitational Potential Energy
The change in gravitational potential energy (only near the
surface of the Earth) is
U g mgy
where y is the change in the object’s vertical position
with respect to some reference point.
You are free to choose to location of this where ever it is
convenient.
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
18
GPE Problem
The table is 1.0 m tall and the mass of the box is 1.0 kg.
Ques: What is the change in gravitational potential energy of
the box if it is placed on the table?
U=0
First: Choose the reference level at the floor. U = 0 here.
U g mgy mg y f yi
1.0 kg 9.8 m/s 2 1.0 m 0 m 9.8 J
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
19
GPE Problem
Example continued:
Now take the reference level (U = 0) to be on top of the
table so that yi = 1.0 m and yf = 0.0 m.
U g mgy mg y f yi
1 kg 9.8 m/s 2 0.0m 1.0 m 9.8 J
The results do not
depend on the
location of U = 0.
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
20
Total Mechanical Energy
Mechanical energy is
E K U
The total mechanical energy of a system is conserved
whenever nonconservative forces do no work.
That is
Ei = Ef
or K = U.
Then if K increases U decreases and vice versa
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
21
Mechanical Energy Problem
A cart starts from position 4 with v = 15.0 m/s to the left. Find
the speed of the cart at positions 1, 2, and 3. Ignore friction.
E4 E3
U 4 K 4 U 3 K3
1
1
mgy4 mv42 mgy3 mv32
2
2
v3 v42 2 g y4 y3 20.5 m/s
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
22
Mechanical Energy Problem
E4 E2
U 4 K4 U 2 K2
Or use
E3=E2
1
1
mgy4 mv42 mgy2 mv22
2
2
v2 v42 2 g y4 y2 18.0 m/s
E4 E1
U 4 K 4 U1 K1
Or use
E3=E1
1 2
1 2
mgy4 mv4 mgy1 mv1
2
2
E2=E1
v1 v42 2 g y4 y1 24.8 m/s
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
23
Roller Coaster Problem
A roller coaster car is about to roll down a track. Ignore
friction and air resistance.
m = 988 kg
40
m
20
m
y=0
Ei E f
(a) At what speed does the
car reach the top of the loop?
MFMcGraw
U i Ki U f K f
1
mgyi 0 mgy f mv 2f
2
v f 2 g yi y f 19.8 m/s
Ch06 - Energy - Revised: 2/20/10
24
Roller Coaster Problem
Example continued:
(b) What is the force exerted on the car by the track at the top
of the loop?
Apply Newton’s Second Law:
FBD for the car:
y
x
N
MFMcGraw
w
v2
Fy N w mar m r
v2
N wm
r
v2
N m mg 2.9 10 4 N
r
Ch06 - Energy - Revised: 2/20/10
25
Roller Coaster Problem
Example continued:
(c) From what minimum height above the bottom of the track
can the car be released so that it does not lose contact with
the track at the top of the loop?
Using conservation of mechanical energy:
Ei E f
U i Ki U f K f
1 2
mgyi 0 mgy f mvmin
2
Solve for the starting height
MFMcGraw
2
vmin
yi y f
2g
Ch06 - Energy - Revised: 2/20/10
26
Roller Coaster Problem
Example continued:
What is vmin?
v = vmin when N = 0. This means that
v2
N wm
r
2
vmin
w mg m
r
vmin gr
The initial height must be
2
vmin
gr
yi y f
2r
2.5r 25.0 m
2g
2g
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
27
Nonconservative Forces
What do you do when there are nonconservative forces?
For example, if friction is present
E E f Ei Wfric
The work done
by friction.
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
28
Gravitational Potential Energy
Part 2 - Away from Earth’s Surface
The general expression for gravitational potential energy is:
GM1M 2
U r
r
where U r 0
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
29
Gravitational Potential Energy
Example:
What is the gravitational potential energy of a body of
mass m on the surface of the Earth?
GM e m
GM1M 2
U r Re
r
Re
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
30
Planetary Motion
A planet of mass m has an elliptical orbit around the Sun. The
elliptical nature of the orbit means that the distance between the
planet and Sun varies as the planet follows its orbital path. Take
the planet to move counterclockwise from its initial location.
QUES: How does the speed of a planet vary as it orbits the Sun
once?
The mechanical energy of the
planet-sun system is:
B
r
A
1 2 GmM sun
E mv
constant
2
r
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
31
Planetary Motion
1 2 GmM sun
E mv
constant
2
r
B
r
A
At point “B” the planet is the farthest from the Sun. At point “A” the
planet is at its closest approach to the sun.
Starting from point “B” (where the planet moves the slowest), as
the planet moves in its orbit r begins to decrease. As it decreases
the planet moves faster.
At point “A” the planet reaches its fastest speed. As the planet
moves past point A in its orbit, r begins to increase and the planet
moves slower.
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
32
Work by a Variable Force
Work can be calculated by finding the area
underneath a plot of the applied force in the
direction of the displacement versus the
displacement.
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
33
Example: What is the work done by the variable force shown
below?
Fx (N)
F3
The net work is then
W1+W2+W3.
F2
F1
x1
x2
x3
x (m)
The work done by F1 is
W1 F1 x1 0
The work done by F2 is
W2 F2 x2 x1
The work done by F3 is
MFMcGraw
W3 F3 x3 x2
Ch06 - Energy - Revised: 2/20/10
34
Spring Force
By hanging masses on a spring we find that stretch
applied force. This is Hooke’s law.
For an ideal spring: Fx = kx
Fx is the magnitude of the force exerted by the free end of
the spring, x is the measured stretch of the spring, and k is
the spring constant (a constant of proportionality; its units
are N/m).
A larger value of k implies a stiffer spring.
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
35
Spring Force
(a) A force of 5.0 N applied to the end of a spring cause the
spring to stretch 3.5 cm from its relaxed length.
Ques: How far does a force of 7.0 N cause the same spring
to stretch?
For springs Fx. This allows us to write
F1 x1
.
F2 x2
F2
7.0 N
x1
Solving for x2: x2
3.5 cm 4.9 cm.
F1
5.0 N
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
36
Spring Force
Example continued:
(b) What is the spring constant of this spring?
F1 5.0 N
k
1.43 N/cm.
x1 3.5 cm
Or
F2 7.0 N
k
1.43 N/cm.
x2 4.9 cm
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
37
Spring Force
An ideal spring has k = 20.0 N/m. What is the amount of work done (by
an external agent) to stretch the spring 0.40 m from its relaxed length?
W Area under curve
1
1
1
2
kx1 x1 kx12 20.0 N/m 0.4 m 1.6 J
2
2
2
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
38
Elastic Potential Energy
The work done in stretching or compressing a
spring transfers energy to the spring.
Below is the equation of the spring potential energy.
1 2
U s kx
2
The spring is considered the system
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
39
Elastic Potential Energy
A box of mass 0.25 kg slides along a horizontal, frictionless
surface with a speed of 3.0 m/s. The box encounters a
spring with k = 200 N/m.
Ques: How far is the spring compressed when the box is
brought to rest?
Ei E f
U i Ki U f K f
1 2 1 2
0 mv kx 0
2
2
m
v 0.11 m
x
k
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
40
Power
Power is the rate of energy transfer.
Average Power
E
Pav
t
Instantaneous Power
P Fv cos
The unit of power is the watt. 1 watt = 1 J/s = 1 W.
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
41
Power - Car Example
A race car with a mass of 500.0 kg completes a quarter-mile
(402 m) race in a time of 4.2 s starting from rest. The car’s
final speed is 125 m/s. (Neglect friction and air resistance.)
Ques: What is the engine’s average power output?
E U K
Pav
t
t
1 2
mv
K 2 f
9.3 105 watts
t
t
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
42
Summary
• Conservation of Energy
• Calculation of Work Done by a Constant or
Variable Force
• Kinetic Energy
• Potential Energy (gravitational, elastic)
• Power
MFMcGraw
Ch06 - Energy - Revised: 2/20/10
43