DISP-2003: Introduction to Digital Signal Processing
Download
Report
Transcript DISP-2003: Introduction to Digital Signal Processing
Dr. Hugh Blanton
ENTC 3331
Gauss’s Law
• Recall
• Divergence literally means to get farther
apart from a line of path, or
• To turn or branch away from.
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
3
• Consider the velocity vector of a
cyclist not diverted by any thoughts or
obstacles:
Goes straight ahead at
constant velocity.
(degree of) divergence 0
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
4
Now suppose they turn with a constant velocity
diverges from original direction
(degree of) divergence 0
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
5
Now suppose they turn and speed up.
diverges from original direction
(degree of) divergence >> 0
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
6
Current of water
No divergence from original direction
(degree of) divergence = 0
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
7
Current of water
Divergence from original direction
(degree of) divergence ≠ 0
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
8
• Source
• Place where something originates.
• Divergence > 0.
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
9
• Sink
• Place where something disappears.
• Divergence < 0.
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
10
• Derivation of Divergence Theorem
• Suppose we have a cube that is infinitesimally small.
y
Vector field, V(x,y,z)
n̂ i
x
z
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
one of six faces
11
• Need the concept of flux:
• water through an area
• current through an area
A
Â
ĵ
• water flux per cross-sectional area (flux
density implies
• (total) flux =
ˆj A
ˆ = scaler.
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
12
• Let’s assume the vector, V(x,y,z),
represents something that flows, then
• flux through one face of the cube is:
V nˆ i
• For example n̂ i might be:
• and
nˆ yz dydz xˆ
Vx xˆ dydz xˆ Vx dydz
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
13
• The following six contributions for each
side of the cube are obtained:
Vx dydz
Vx dydz
Vy dxdz
V y dxdz
Vz dxdy
Vz dxdy
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
14
• Now consider the opposite faces of the
infinitesimally small cube.
vector magnitude on the input
side.
Vx1
Vx 2 Vx1
dx
x
y
n̂ i
Vx1
z
differential change of Vx over dx
Vx 2
x
dx
• This holds equivalently for the two other pairs of faces.
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
15
• Flux in the x-direction.
Vx
Vx 2 Vx1
dx
x
y
and
n̂ i
Vx1
z
Vx xˆ dydz xˆ Vx dydz
Vx 2
x
dx
Vx1
Vx
Vx1 x dx dydz Vx 2 x dx dydz
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
16
Divergence Theorem
• Divergence Theorem
• Gauss’s Theorem
• Valid for any vector field
• Valid for any volume,
• Whatever the shape.
divV V Vx V y Vz
x
y
z
Note that the above only applies to the
Cartesian coordinate system.
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
17
• Since Gauss’s law can be applied to
any vector field, it certainly holds for
the electric field, Ex, y, z and the
electric flux density, D x, y, z .
DdV D d sˆ
V
S
• The use of D in this context instead of E
is historical.
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
18
• If Gauss’s law is true in general, it should
be applicable to a point charge.
• Constuct a virtual sphere around a positive
charge with radius, R.
+
q
dŝ D
• D must be radially outward along the unit
vector, R̂ .
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
19
ˆ R
ˆ d s Dd s
ˆ
D
d
s
D
R
S
S
S
S
S
2
Dd
s
D
d
s
D
R
sin dd
DR
2
0
2DR
2
S
2
sin d d
0
0
sin d
2DR cos 0 2DR 2 1 1 4DR 2
2
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
20
• What about the volume integral?
1
1
1 D
2
D
dV
R
D
D
sin
R
V
R 2 R
R sin
R sin
D
1 2
1
D sin 1
D 2
R DR
R R
R sin
R sin
DR 0, D 0, D 0
• D only has a component along the
radius vector
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
21
1
D 2
R 2 DR
R R
R 1
2
2
2
V DdV 0 R2 R R DR R dR0 sin d 0 d
4
4
R
0
R
1
2
2
2
R
D
R
dR
4
R
R
2
0 R DR dR
R R
What is this?
DR o ER o
1
q
q
2
D
R
R
4o R 2
4
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
22
• Throw in some physics!
DR ER
4
R
0
1
q
4 R 2
R
R
2 q
R
dR
q
dR
q
1 q
2
0
0
R 4R
R
integration and
differentiation cancel out
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
23
• So what?
4DR D dsˆ D dV q
2S
V
4 oER q
1 q
E
2
4 o R
2
• Coulomb’s law and Gauss’s law are
equivalent for a point charge!
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
24
4DR D dsˆ D dV q
2
S
V
divergence
theorem
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
25
4DR D dsˆ D dV q
2
S
V
Gauss’s Law
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
26
• Because of its greater mathematical
versatility, Gauss’s law rather than
Coulomb’s law is a fundamental postulate
of electrostatics.
• A postulate is believed to be true, although no
proof may be possible.
D dsˆ D dV Q
S
V
• Any surface of an arbitrary volume.
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
27
• Note
V dV Q D dV D dsˆ
V
V
definition of
charge distribution
S
Gauss’s Law
• which infers
D V
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
Differential form of
Gauss’s Law
28
• Maxwell Equation
D V
• One of two Maxwell equations for
electrostatics.
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
29
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
30
Electric flux density or
Displacement Field [C/m2]
Charge Density [C]
D
Magnetic Induction [Weber/m
B 0
or Tesla]]
B
E
Time [s]
t
Electric Field [V/m]
D
H J
t
Magnetic Field [A/m]
2
Current Density [A/m2]
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
31
Page 139
( 0 r E )
(0 r H ) 0
( 0 r H )
E
t
( 0 r E )
H J
t
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
32
Page 139
• Use Gauss’s law to obtain an
expression for the E-field from an
infinitely long line of charge.
l constant
0
E(r )
X
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
33
• Symmetry Conditions
• Infinite line of charge
• D E 0
• Dz Ez 0
• Dr Dr r̂
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
34
• Gauss’s law considers a hypothetical
closed surface enclosing the charge
distribution.
• This Gaussian surface can have any shape,
but the shape that minimizes our calculations
is the shape often used.
Ddsˆ Q
0
l constant
dŝ
D
S
h
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
35
• The total charge inside the Gaussian
volume is:
Q l h
• The integral is:
2 h
D dsˆ Dr rˆ rˆrddz
0
o
S
• The right and left surfaces do not contribute
since.
Dz 0
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
36
Dr r
2
0
h
o
ddz
2hDr r
and
2hDr r l h
l
Dr
o Er
2r
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
37
• Two infinite lines of charge.
• Each carrying a charge density, l.
• Each parallel to the z-axis at
• x = 1 and x = -1.
• What is the E-field at any point along the y-axis?
l constant
x
1
z
l constant
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
1
38
• For a single line of constant charge
l
Er
2o r
• Using the principle of superposition of
fields:
Etot E1 E2
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
39
r1
0 12 y 02
1 y2
r2
rˆ2
xˆ yyˆ
rˆ1
r1
y
x
r2
-1
0 12 y 02
1 y2
xˆ yyˆ
r2
xˆ yyˆ xˆ yyˆ
Etot l
2
2o 1 y
1 y 2
E (0, y,0)
r1
1
x
z
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
40
• Only interested in the y-component of the
field
l
Etot
2o
yyˆ
yyˆ
1 y2 1 y2
l
Etot
2o
2 yyˆ
1 y2
l yyˆ
Etot
o 1 y 2
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
41
• A spherical volume of radius a
contains a uniform
charge density V.
• Determine D E for
• R a and
• Ra
Note: Charge distribution for
an atomic nucleus where
a = 1.210-15 m A⅓ (A is the
mass number)
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
+
q
dŝ D
42
• Outside the sphere (R a), use
Gauss’s Law
D dsˆ
S
• To take advantage of symmetry, use
the spherical coordinates:
ds R 2 sin dd
• and
D Dr rˆ
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
43
• Field is always perpendicular for any
sphere around the volume.
• The left hand side of Gauss’s Law is
2
2
2
ˆ
ˆ
D dsˆ DR R RR sin dd DR R sin dd
0
S
0
S
4
Q
4DR R Q DR
4R 2
2
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
44
• Recall that
D V
DdV V dV
V
V
V dV V
0
2
a
0
0
R 2 sin dRd d
V
2
a
0
0
0
2
dV
sin
d
d
R
V
V
dR
V
4
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
45
4V
a
0
3
a
R 2 dR 4V
Q
3
4V a 3 V a 3
Q
DR
2
2
4R
4 3R
3R 2
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
46
• Inside the sphere (R a), use
Gauss’s Law
D dsˆ V dV Q
S
V
4DR R 2
previously calculated
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
47
V dV
R
0
2
0
0
V R 2 sin dRd d
V
R
V 4 R 2 dR
0
V 4R 3
3
4DR R 2
V 4R 3
3
V R
DR
3
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
48
• Thin spherical shell
• Find E-field for
• R a and
• Ra
S 0
a
S constant
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
49
• Inside (R a)
• Gauss’s Law
D dsˆ Q 0
S
S 0
a
S constant
• This is only possible if D 0.
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
50
• Outside (R a)
• Gauss’s Law
D dsˆ Q S dS
S
S 0
a
S constant
S
4DR R 2
previously calculated
S dS
0
S
S
2
0
S a 2 sin dd
dS 4 S a
2
S
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
51
4DR R 2 4 S a 2
2
a
DR S 2
R
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
52
• An electric field is given as
1
E x, y, z xˆ 2 x y yˆ 3 x 2 y V
m
• Determine
• V
• Q in a 2m 2m 2m cube.
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
53
• Maxwell’s equation of
Electrostatics
div D V div E
y
div E 2 x y 3x 2 y
x
y
div E 2 2 0 V 0
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
x
z
54
D dsˆ Q
y
S
1
For the surface 1 directed in the x-direction.
2x y xˆ xˆ dydz
2
2
0
0
x
x y dydz
0 0
2
2
2
z
2
y
2 x y z dy 4 x y dy 4 xy
0
0
2 0
2
2
0
2
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
2
55
y
2
2
y
4 xy 8 x 8
2 0
1
For the surface 2 directed in the -x-direction.
2x y xˆ xˆdydz
2
2
0
0
2
0
2x y dydz 8x 8
2
2
x
z
0
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
56
y
For the surface 3 & 4 directed in the z- & -z
directions.
D dsˆ 0
4
3
S
x
z
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
57
y
For the surface 5 directed in the y-direction.
5
3x 2 y yˆ yˆ dxdz
2
2
0
0
3x 2 y dxdz
2
2
0
0
3xz 2 yz
2
2
0
0
x
dx 6 x 4 y dx
2
z
0
2
6x
4 xy 12 8 y
2
0
2
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
58
y
For the surface 6 directed in the -y-direction.
3x 2 y yˆ yˆ dxdz
2
2
0
0
2
0
6
3x 2 y dxdz
2
x
0
12 8 y
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
z
59
• By superposition
D dsˆ 0
S
• Indeed, there is no charge in the cube.
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
60
• Find D in all regions of an infinitely
long cylindrical shell.
• Inner shell( r 1 )
• Cylindrical volume.
D dsˆ Q 0
V constant
V 0
1
S
3
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
61
• Shell itself ( 1 r 3 )
• Cylindrical coordinates.
V constant
2 h
D dsˆ Dr rˆ rˆ rd dz
0
V 0
0
S
1
r
dŝ
D r
3
h
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
62
2
h
0
0
Dr rˆ rˆ rd dz
2
0
Dr r
2
0
h
0
h
0
Dr rd dz
2
d dz Dr rh d 2Dr rh
0
• Top and bottom face
of cylinder do
not contribute to D .
r
2
h
0
0
1
V rdrd dz
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
63
r
2
h
0
0
1
r
V rdrd dz 2 V h rdr
1
r
2 V h
2
2
r
2
V h r 1
1
D dsˆ V dV
S
V
2Dr rh V h(r 2 1)
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
64
2Dr rh V h(r 2 1)
Dr
V (r 2 1)
2
r
Dr. Blanton - ENTC 3331 - Gauss’s Theorem
65