Collective_effects_II-Budapest-G.Franchettix
Download
Report
Transcript Collective_effects_II-Budapest-G.Franchettix
Collective Effects II
G. Franchetti, GSI
CERN Accelerator – School
Budapest, 2-14 / 10 / 2016
11 / 10 / 16
G. Franchetti
1
Type of fields
Collective Effects ?
Collective Effects
11 / 10 / 16
G. Franchetti
2
Image charges
11 / 10 / 16
G. Franchetti
3
Influence of the chamber wall
the electron in the metal
quickly travel on the surface
of the metal until the electric
field parallel to the surface
is zero
+
field line at 900
11 / 10 / 16
G. Franchetti
4
Image charge
image
charge
+
-
the image charge is a reflection of the particle with exchanged sign
11 / 10 / 16
G. Franchetti
5
Image charge
image
charge
+
-
the image charge is a reflection of the particle with exchanged sign
11 / 10 / 16
G. Franchetti
6
Conducting plates
y
h
11 / 10 / 16
G. Franchetti
7
h
11 / 10 / 16
G. Franchetti
8
h
11 / 10 / 16
G. Franchetti
9
h
11 / 10 / 16
G. Franchetti
10
Incoherent motion
Consider a
particle of the
beam
h
11 / 10 / 16
y
G. Franchetti
11
Summing image charge
contribution in pairs
h
y
Total electric field
11 / 10 / 16
G. Franchetti
12
Equation of motion
In the equation of motion
as
11 / 10 / 16
G. Franchetti
13
Laslett Tuneshift
11 / 10 / 16
G. Franchetti
14
Image currents
11 / 10 / 16
G. Franchetti
15
Ferromagnetic Boundaries
B1n
B1t
B2n
B2t
11 / 10 / 16
G. Franchetti
16
Ferromagnetic Boundaries
image current
beam current
11 / 10 / 16
G. Franchetti
17
image current
B
g
x
y
Beam
11 / 10 / 16
G. Franchetti
18
image current
for
Bx
y
In the equation of motion
11 / 10 / 16
G. Franchetti
19
therefore
incoherent
SC
ferromagnetic
induced image
current
(coherent force)
Tune-shift !
11 / 10 / 16
G. Franchetti
20
Coherent Motion
11 / 10 / 16
G. Franchetti
21
Coherent motion
y
y
11 / 10 / 16
G. Franchetti
22
y
11 / 10 / 16
G. Franchetti
23
all image
charges
moves
y
11 / 10 / 16
G. Franchetti
24
Coherent motion
11 / 10 / 16
G. Franchetti
25
all image
charges
moves
Force on the beam
y
11 / 10 / 16
G. Franchetti
26
NO FORCE CREATED ON THE BEAM
2h
y
y
2h
11 / 10 / 16
G. Franchetti
27
all image
charges
moves
Force on the beam
y
n = 1, 3, 5, 7, …
n = 1, 3, 5, 7, …
11 / 10 / 16
G. Franchetti
28
therefore
(trick!)
with n = 1, 2, 3, 4, 5, 6, …
The electric field Ex due to coherent shift is zero on the center of mass
11 / 10 / 16
G. Franchetti
29
equation of motion
but
11 / 10 / 16
G. Franchetti
30
Coherent detuning
11 / 10 / 16
G. Franchetti
31
Beam-beam
Bunches of the beam 1 feels the field of the other beam when
it travels through the other bunch of the beam 2. The same is reverted
for Beam 2.
11 / 10 / 16
G. Franchetti
32
Beam-beam tune-shift
r0 = classical radius of particle, B=number of bunches per beam,
N = particle per beam
Usually one would expect that the acceptable tune-shift be 0.15 – 0.2
Reality requires more stringent values ~ 0.004 – 0.006
Complications: one beam feels also all the nonlinear field of the other beam!
Storage is for millions of turns, and high order resonances plays a crucial role
and should be avoided.
11 / 10 / 16
G. Franchetti
33
The Collective Effects
Thanks to Oliver Boine-Frankenheim, I. Hofmann, U. Niedermayer,
D. Brandt
11 / 10 / 16
G. Franchetti
34
Interaction of the beam with the
environment
11 / 10 / 16
G. Franchetti
35
Effect on the dynamics
11 / 10 / 16
G. Franchetti
36
11 / 10 / 16
G. Franchetti
37
Bunch in a conducting pipe
+
v
+ + ++ + + +
v
+
11/ 10 / 16
+ + ++ + + +
v
G. Franchetti
38
Bunch in a conducting pipe with
sudden change
v
+ + +++ + + +
v
v
+ + +++ + + +
v
11/ 10 / 16
G. Franchetti
39
Situation
v
+ + +++ + + +
v
+ + +++ + + +
v
The electric field from the self-field has a delay
Energy gained by one unit charge
11/ 10 / 16
G. Franchetti
40
Panofsky theorem
v=c
out
q
in
?
Can we say something about
11/ 10 / 16
G. Franchetti
41
Panofsky theorem
We find a constrain to the forces created by electromagnetic fields
Without actually knowing almost anything !
11/ 10 / 16
G. Franchetti
42
Wake Field
11 / 10 / 16
G. Franchetti
43
Cavities
E
11 / 10 / 16
E
E
EE
E
G. Franchetti
E
E
E
E
44
MODEL
E
11 / 10 / 16
G. Franchetti
45
MODEL
Capacitor
I
11 / 10 / 16
G. Franchetti
46
MODEL
E
11 / 10 / 16
G. Franchetti
47
MODEL
Inductance
I
11 / 10 / 16
G. Franchetti
48
MODEL
E
11 / 10 / 16
G. Franchetti
49
MODEL
Resistance
I
11 / 10 / 16
G. Franchetti
50
All together
L
C
R
11 / 10 / 16
G. Franchetti
51
RLC Features
Isolated RLC
Resonance frequency
L
C
Quality factor
R
V
11 / 10 / 16
Damping rate
G. Franchetti
52
Meaning
V
1
5
0
t
5
1
0
11 / 10 / 16
2
4
6
G. Franchetti
8
10
53
Response to one particle
What happen when one particle goes through the cavity ?
Before
I
t
v
11 / 10 / 16
G. Franchetti
54
Response to one particle
After
I
t
v
11 / 10 / 16
G. Franchetti
55
Pulse Response
This is the potential in the cavity
Green or wake function
11 / 10 / 16
G. Franchetti
56
v
t
11 / 10 / 16
G. Franchetti
57
11 / 10 / 16
G. Franchetti
58
Summary
The wake function tells us what is the longitudinal field experienced by another
particle passing through the cavity later
z
11 / 10 / 16
G. Franchetti
59
Summary
The wake function tells us what is the longitudinal field experienced by another
particle passing through the cavity later
z
11 / 10 / 16
G. Franchetti
60
Summary
The wake function tells us what is the longitudinal field experienced by another
particle passing through the cavity later
z
11 / 10 / 16
G. Franchetti
61
Summary
The wake function tells us what is the longitudinal field experienced by another
particle passing through the cavity later
z
11 / 10 / 16
G. Franchetti
62
Impedance
11 / 10 / 16
G. Franchetti
63
Impedance
It is a quantity that relate V and I
11 / 10 / 16
G. Franchetti
64
Impedance
Impedance
11 / 10 / 16
G. Franchetti
65
Properties
1
0.5
0
-0.5
0
11 / 10 / 16
1
2
G. Franchetti
3
4
66
Properties
is zero
At
is maximum
inductive
capacitive
11 / 10 / 16
G. Franchetti
67
Power dissipated
The power dissipated depends on the resistive impedance
11 / 10 / 16
G. Franchetti
68
Complex notation
Complex notation
If Q is very large only for
11 / 10 / 16
close to
G. Franchetti
69
11 / 10 / 16
G. Franchetti
70
Wake potential Impedance
Charge through the cavity at
Consider now the wake at
The wake of that charge at time t is
The potential in the cavity at time t due to the charge passing at t’ is
The total potential due to all charges passing through the cavity in
11 / 10 / 16
G. Franchetti
is
71
If now the current I is
then
with some change of variable
We wait long enough that transient effect disappears, hence
11 / 10 / 16
G. Franchetti
72
Complicated geometries of the vacuum chamber give an effect on the
beam which is described by the impedance Z(ω)
1
0.5
0
-0.5
0
11 / 10 / 16
G. Franchetti
1
2
3
4
73
Consequences of impedances
Energy loss on pipes heating (important if you have
a superconducting machine!)
narrow
resonances
11 / 10 / 16
G. Franchetti
Broad
Band
Model
74
Consequences of impedances
Feed-back to the beam as a hole: collective effects
Impedance
We have seen the longitudinal
impedance in a cavity
More types of impedances …
Dynamics of the
all beam is affected
11 / 10 / 16
G. Franchetti
75
Longitudinal dynamics
11 / 10 / 16
G. Franchetti
76
Longitudinal dynamics
synchronous orbit
R0
11 / 10 / 16
G. Franchetti
77
Longitudinal dynamics
synchronous orbit
R0
C + δC
C
p
R
11 / 10 / 16
This property
comes from
the magnets
G. Franchetti
78
Longitudinal dynamics
revolution time
R0
C + δC
C
p
v + dv
11 / 10 / 16
R
v
G. Franchetti
79
Nobody can go faster than light
revolution time
If this is large
p v
R0
v + dv
this velocity will always be less
than “c”
Therefore at a certain point the
circumference will growth, but
the particle speed remains “c”
It takes longer to make one turn !
11 / 10 / 16
G. Franchetti
80
If
we are at the transition energy
If
increasing energy
revolution time shorter
If
increasing energy
revolution time longer !!
11 / 10 / 16
G. Franchetti
81
RF
synchronous orbit
R0
RF
11 / 10 / 16
G. Franchetti
82
The synchronous particle has energy
and goes through the cavity at time
Voltage in the cavity
this is the phase of the synchronous particle
This is a phase we know each time the particle goes through the cavity
11 / 10 / 16
G. Franchetti
83
Non synchronous particle
R0
RF
slower particle
(if below transition)
11 / 10 / 16
G. Franchetti
84
Voltage on the particle
Gain of energy
Now we include an energy loss per turn an per particle U
Define relative energy
11 / 10 / 16
G. Franchetti
85
If
is small, than this term is equal to the time derivative of
but U, depends on
11 / 10 / 16
G. Franchetti
86
If
are small we can expand
These two terms are equal
for the synchronous particle
Phase shift is used to
measure U Z
We remain
with the equation
In addition at high energy
11 / 10 / 16
G. Franchetti
87
Final equation of motion (in tau)
11 / 10 / 16
G. Franchetti
88
Solution
Solving for lambda:
that is
with
if
11 / 10 / 16
G. Franchetti
Solution stable
89
Interpretation
E < ET
11 / 10 / 16
No Energy Loss
E > ET
G. Franchetti
90
Interpretation
With Energy Loss
E < ET
11 / 10 / 16
E > ET
G. Franchetti
91
Bunch Lengthening
11 / 10 / 16
G. Franchetti
92
Bunch lengthening
dz
Ez
In one turn
change of energy
per charge
11 / 10 / 16
L is the integrated inductance
G. Franchetti
93
Parabolic bunch
z
center
of the
bunch
11 / 10 / 16
G. Franchetti
94
Parabolic bunch
center
of the
bunch
11 / 10 / 16
G. Franchetti
95
Voltage induced
V
center
of the
bunch
11 / 10 / 16
G. Franchetti
96
If we compare with RF
V
This creates a
“longitudinal detuning”
11 / 10 / 16
center
of the
bunch
G. Franchetti
97
By using a bunch with the same longitudinal emittance a reduction of
longitudinal focusing strength produces a bunch lengthening
The bunch becomes matched with the effective voltage slope
11 / 10 / 16
G. Franchetti
98
Effective voltage
induced voltage
Linearizing in tau
focusing from RF
11 / 10 / 16
G. Franchetti
defocusing from
impedance
99
But
11 / 10 / 16
therefore
G. Franchetti
100
but
Therefore
is the longitudinal strength
in absence of impedance
11 / 10 / 16
G. Franchetti
101
Therefore the relative change in omega is
For protons
11 / 10 / 16
G. Franchetti
102
Observation
The effect of the impedance is local, hence the voltage induced by
impendence does not effect the center of mass (like for the space charge)
11 / 10 / 16
G. Franchetti
103
Summary
1) Wall charges creates detuning incoherent tunes
2) Ferromagnetic material creates image currents:
Coherent motion coherent tunes
3) Concept of Wake field
4) Impedance of a cavity, Wake impedance
5) Energy loss
6) Longitudinal dynamics, effect of energy loss
7) Bunch lengthening
11 / 10 / 16
G. Franchetti
104
References
Lectures of Albert Hofmann, CAS
Physics of collective beam instabilities in high energy accelerators - A.W. Chao, 1993
Theory and Design of Charged Particle Beams - M. Reiser, 1994
Particle Accelerator Physics - H. Wiedemann
11 / 10 / 16
G. Franchetti
105