Angular Momentum,Impulse and Conservation of Angular Momentum
Download
Report
Transcript Angular Momentum,Impulse and Conservation of Angular Momentum
Conservation of Angular
Momentum, Change in Angular
Momentum and, Angular Impulse
October
Conservation of Angular Momentum
Lmom is a conserved quantity/remains constant in the absence of an external force (i.e.
torque)
Since Lmom is a constant for an isolated system, and because the Lmom formula can be
rearranged to give v = Lmom /(mr), the velocity v and the separation r are inversely correlated.
thus, conservation of angular momentum demands that a decrease in the separation r be
accompanied by an increase in the velocity v, and vice versa.
We observed this during our Ironman demo:
mrBIGvsmall
Another example
=
mrsmallvBIG
Change in Angular Momentum
How do we deal with a change in angular momentum (∆ Lmom or ∆ Iω)?
The same way we did with a change in linear momentum
Recall, for linear momentum:
Change in linear momentum = ∆P= m∆v
Same for change in angular momentum except symbols change:
Change in Angular momentum = ∆ Lmom = I ∆ ω
where ∆ ω = ω2- ω1
Let’s try Example 2 part “a” from pg.56
Angular Impulse
Recall from linear impulse that J=F∆t which means that
a linear impulse is the result of a force applied in a certain amount of time
ex. Hydraulic spreader
(HUGE jaw force applied to outer edges of car door
for 1min results in HUGE IMPULSE to pry open door)
Angular Impulse is what causes objects to start or stop rotating
Like linear impulse it still happens in a certain amount of time EXCEPT, since
rotation, the force required to start that rotation is called TORQUE
TORQUE is a force applied from a certain distance from the center of object such
that;
Torque(T) = Fxd where F(N or lb), d (m or ft), T (N.m or lb.ft)
Working with Angular Impulse
Angular Impulse causes rotation when torque (F x d) is applied to an object in a
certain period of time.
Screw begins to turn due to angular impulse applied from wrench
Ang.Imp. = (Fxd)∆t
where Ang.Imp. has units (N.m).s or (lb.ft).s
we could re-write equation as Ang.Imp.= T∆t
And of course don’t forget:
Impulse (in this case angular impulse) is what causes change in momentum so:
T∆t = I∆ω
Let’s try part “b” of Example 2 pg.56
Classwork/Homework (whatever is not
finished in class must be finished for hmwk)
Read pg.44-50
Complete Qd-g from Let’s Review units on
pg.55
Complete Student Exercises(#1-11) on
pg.51. You must write out the full question
for Q1-10 and use GFS for #11.
Answer Qs #4-6 on pg.57 of workbook