Chapter 6 slides, Computer Networking, 3rd edition

Download Report

Transcript Chapter 6 slides, Computer Networking, 3rd edition

Link Layer
 5.1 Introduction and




services
5.2 Error detection
and correction
5.3Multiple access
protocols
5.4 Link-Layer
Addressing
5.5 Ethernet
 5.6 Hubs and switches
 MPLS
 A Day in The Life
5: Link Layer Part-2
5-1
Multiprotocol label switching (MPLS)
 initial goal: speed up IP forwarding by using fixed
length label (instead of IP address) to do
forwarding


borrowing ideas from Virtual Circuit (VC) approach
but IP datagram still keeps IP address!
PPP or Ethernet
header
MPLS header
label
20
IP header
remainder of link-layer frame
Exp S TTL
3
1
5
5: Link Layer Part-2
5-2
MPLS capable routers
 a.k.a. label-switched router
 forwards packets to outgoing interface based
only on label value (don’t inspect IP address)

MPLS forwarding table distinct from IP forwarding
tables
 signaling protocol needed to set up forwarding
 RSVP-TE
 forwarding possible along paths that IP alone would
not allow (e.g., source-specific routing) !!
 use MPLS for traffic engineering
 must co-exist with IP-only routers
5: Link Layer Part-2
5-3
MPLS forwarding tables
in
label
out
label dest
10
12
8
out
interface
A
D
A
0
0
1
in
label
out
label dest
out
interface
10
6
A
1
12
9
D
0
R6
0
0
D
1
1
R3
R4
R5
0
0
R2
in
label
8
out
label dest
6
A
out
interface
0
in
label
6
outR1
label dest
-
A
A
out
interface
0
5: Link Layer Part-2
5-4
Synthesis: a day in the life of a web request
 journey down protocol stack complete!
 application, transport, network, link
 putting-it-all-together: synthesis!
 goal: identify, review, understand protocols (at
all layers) involved in seemingly simple scenario:
requesting www page
 scenario: student attaches laptop to campus
network, requests/receives www.google.com
5: DataLink Layer
5-5
A day in the life: scenario
DNS server
browser
Comcast network
68.80.0.0/13
school network
68.80.2.0/24
web page
web server
64.233.169.105
Google’s network
64.233.160.0/19
5: DataLink Layer
5-6
A day in the life… connecting to the Internet
 connecting laptop needs to
DHCP
UDP
IP
Eth
Phy
DHCP
DHCP
DHCP
DHCP
DHCP
DHCP
DHCP
DHCP
DHCP
DHCP
UDP
IP
Eth
Phy
router
(runs DHCP)
get its own IP address,
addr of first-hop router,
addr of DNS server: use
DHCP
 DHCP request encapsulated
in UDP, encapsulated in IP,
encapsulated in 802.1
Ethernet
 Ethernet frame broadcast
(dest: FFFFFFFFFFFF) on LAN,
received at router running
DHCP server
 Ethernet demux’ed to IP
demux’ed, UDP demux’ed to
DHCP
5: DataLink Layer
5-7
A day in the life… connecting to the Internet
 DHCP server formulates
DHCP
UDP
IP
Eth
Phy
DHCP
DHCP
DHCP
DHCP
DHCP ACK containing
client’s IP address, IP
address of first-hop
router for client, name &
IP address of DNS server
 encapsulation at DHCP
DHCP
DHCP
DHCP
DHCP
DHCP
DHCP
UDP
IP
Eth
Phy
router
(runs DHCP)
server, frame forwarded
(switch learning) through
LAN, demultiplexing at
client
 DHCP client receives DHCP
ACK reply
Client now has IP address, knows name & addr of DNS
server, IP address of its first-hop router
5: DataLink Layer
5-8
A day in the life… ARP (before DNS, before HTTP)
DNS
DNS
DNS
ARP query
 before sending HTTP request,
DNS
UDP
IP
ARP
Eth
Phy
ARP
ARP reply
Eth
Phy
need IP address of www.google.com:
DNS
 DNS query created, encapsulated
in UDP, encapsulated in IP,
encasulated in Eth. In order to
send frame to router, need MAC
address of router interface: ARP
 ARP query broadcast, received
by router, which replies with
ARP reply giving MAC address
of router interface
 client now knows MAC address
of first hop router, so can now
send frame containing DNS
query
5: DataLink Layer
5-9
A day in the life… using DNS
DNS
DNS
DNS
DNS
DNS
DNS
DNS
UDP
IP
Eth
Phy
DNS
DNS
DNS
UDP
IP
Eth
Phy
DNS server
DNS
Comcast network
68.80.0.0/13
 IP datagram forwarded from
 IP datagram containing DNS
query forwarded via LAN
switch from client to 1st hop
router
campus network into comcast
network, routed (tables created
by RIP, OSPF, IS-IS and/or
BGP routing protocols) to DNS
server
 demux’ed to DNS server
 DNS server replies to
client with IP address of
www.google.com
5: DataLink Layer 5-10
A day in the life… TCP connection carrying HTTP
HTTP
HTTP
TCP
IP
Eth
Phy
SYNACK
SYN
SYNACK
SYN
SYNACK
SYN
 to send HTTP request,
SYNACK
SYN
SYNACK
SYN
SYNACK
SYN
TCP
IP
Eth
Phy
web server
64.233.169.105
client first opens TCP
socket to web server
 TCP SYN segment (step 1
in 3-way handshake) interdomain routed to web
server
 web server responds with
TCP SYNACK (step 2 in 3way handshake)
 TCP connection established!
5: DataLink Layer
5-11
A day in the life… HTTP request/reply
HTTP
HTTP
HTTP
TCP
IP
Eth
Phy
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
 web page finally (!!!)
displayed
 HTTP request sent into
TCP socket
HTTP
HTTP
HTTP
HTTP
HTTP
TCP
IP
Eth
Phy
web server
64.233.169.105
 IP datagram containing
HTTP request routed to
www.google.com
 web server responds with
HTTP reply (containing
web page)
 IP datgram containing
HTTP reply routed back to
client
5: DataLink Layer 5-12
Chapter 5: Summary
 principles behind data link layer services:
 error detection, correction
 sharing a broadcast channel: multiple access
 link layer addressing
 instantiation and implementation of various link
layer technologies
 Ethernet
 switched LANS, VLANs
 virtualized networks as a link layer: MPLS
 synthesis: a day in the life of a web request
5: DataLink Layer
5-13