01_行動通訊技 - 教育部行動寬頻尖端技術跨校教學聯盟:行動寬頻網

Download Report

Transcript 01_行動通訊技 - 教育部行動寬頻尖端技術跨校教學聯盟:行動寬頻網

Small Cell創新應用與服務專題
課程單元:行動通訊技術之沿革與演進
國立中山大學 資訊工程系
授課教師:李宗南教授
教材編撰:吳忠岳
1
L
A
B
大綱
• 課程目標
• 第一代 (1G , First Generation)
• 第二代 (2G , Second Generation)
• 第三代 (3G , Third Generation)
• 第四代 (4G , Fourth Generation)
• 第五代 (5G and Beyond)
2
L
A
B
大綱
• 課程目標
• 第一代 (1G , First Generation)
• 第二代 (2G , Second Generation)
• 第三代 (3G , Third Generation)
• 第四代 (4G , Fourth Generation)
3
L
A
B
課程目標
• 讓學生了解行動通訊技術的演進
• 從最一開始的類比通訊到LTE的發展過程之簡介
• 相關通訊技術的基本介紹
4
L
A
B
大綱
• 課程目標
• 第一代 (1G , First Generation)
• 第二代 (2G , Second Generation)
• 第三代 (3G , Third Generation)
• 第四代 (4G , Fourth Generation)
5
L
A
B
Cellular Network Basics
• There are many types of cellular services; before delving into
details, focus on basics (helps navigate the “acronym soup”)
• Cellular network/telephony is a radio-based technology; radio
waves are electromagnetic waves that antennas propagate
• Most signals are in the 850 MHz, 900 MHz, 1800 MHz, and
1900 MHz frequency bands
Cell phones operate in this frequency
range (note the logarithmic scale)
L
A
B
Cellular Network
• Base stations transmit to and receive from mobiles at the
assigned spectrum
– Multiple base stations use the same spectrum (spectral reuse)
• The service area of each base station is called a cell
• Each mobile terminal is typically served by the ‘closest’
base stations
– Handoff when terminals move
L
A
B
Cellular Network Generations
• It is useful to think of cellular Network/telephony
in terms of generations:
–
–
–
–
0G: Briefcase-size mobile radio telephones
1G: Analog cellular telephony
2G: Digital cellular telephony
3G: High-speed digital cellular telephony (including
video telephony)
– 4G: IP-based “anytime, anywhere” voice, data, and
multimedia telephony at faster data rates than 3G
(to be deployed in 2012–2015)
L
A
B
Evolution of Cellular Networks
1G
2G
2.5G
3G
4G
L
A
B
Multiple Access Schemes
3 orthogonal Schemes:
• Frequency Division Multiple Access (FDMA)
• Time Division Multiple Access (TDMA)
• Code Division Multiple Access (CDMA)
L
A
B
Frequency Division Multiple
Access
frequency
• Each mobile is assigned a separate frequency channel for the
duration of the call
• Sufficient guard band is required to prevent adjacent channel
interference
• Usually, mobile terminals will have one downlink frequency
band and one uplink frequency band
• Different cellular network protocols use different frequencies
• Frequency is a precious and scare resource. We are running
out of it
B
L
– Cognitive radio
A
Time Division Multiple Access
Guard time – signal transmitted by mobile
terminals at different locations do no arrive
at the base station at the same time
• Time is divided into slots and only one mobile terminal transmits
during each slot
– Like during the lecture, only one can talk, but others may take the floor
in turn
• Each user is given a specific slot. No competition in cellular network
– Unlike Carrier Sensing Multiple Access (CSMA) in WiFi
L
A
B
Code Division Multiple Access
• Use of orthogonal codes to separate different
transmissions
• Each symbol of bit is transmitted as a larger number of
bits using the user specific code – Spreading
– Bandwidth occupied by the signal is much larger than the
information transmission rate
– But all users use the same frequency band together
Orthogonal among users
L
A
B
第一代 (1G , First Generation)
• 蜂巢式行動通訊系統達成射頻通道之再使用(frequency
reuse)
• 早期的類比通訊系統
– 美國:AMPS(Advanced Mobile Phone System)
– 英國:Total Access Communication System(TACS)
– 北歐:Nordic Mobile Telephone(NMT)
• 採用類比式FM調變方式
• 採用FDMA(Frequency Division Multiple Access)多重存取方
式
• 以語音通訊為主,無法支援數據通訊服務
14
L
A
B
第一代 (1G , First Generation) (Cont.)
• 類比蜂巢式行動通訊系統 --- 1G
System Name or Standard
Start Date
Country of origin or region it operated in
AMPS
1979 trial, 1983 commerical
United States, then world wide
AURORA-400
1983
Alberta, Canada
C-Netz (external link, inGerman)
(C-Netz, C-450)
Begins 1981, upgraded in 1988
Germany, Austria, Portugal, South Africa
Comvik
August, 1981
Sweden
NMT 450 (Nordic Mobile Telephone) NMT
900 (Nordic Mobile Telephone)
1981
1986
Sweden, Norway, Denmark, Finland, Oman; NMT
now exists in 30 countries
RadioCom , in French
November, 1985
France
RTMS (Radio Telephone Mobile System)
September, 1985
Italy
TACS (Total Acess Communications
System)
1985
United Kingdom, Italy, Spain, Austria, Ireland
15
L
A
B
大綱
• 課程目標
• 第一代 (1G , First Generation)
• 第二代 (2G , Second Generation)
• 第三代 (3G , Third Generation)
• 第四代 (4G , Fourth Generation)
16
L
A
B
GSM 第二代 (2G , Second Generation)
• Abbreviation for Global System for Mobile
Communications
• Concurrent development in USA and
Europe in the 1980’s
• The European system was called GSM
and deployed in the early 1990’s
L
A
B
第二代 (2G , Second Generation)
•2G主要又分為GSM(Global System for Mobile
Communications)與IS-95(Interim Standard 95)
•GSM 行動通訊系統特點:
(1) 全數位式
(4) 客戶識別 (SIM)
(2) 細胞式 (cellular)
(5) 保密通訊
(3) TDMA / FDMA
(6) 國際漫遊 (roaming)
18
L
A
B
GSM Services
• Voice, 3.1 kHz
• Short Message Service (SMS)
– 1985 GSM standard that allows messages of at most 160 chars.
(incl. spaces) to be sent between handsets and other stations
– Over 2.4 billion people use it; multi-billion $ industry
• General Packet Radio Service (GPRS)
– GSM upgrade that provides IP-based packet data transmission
up to 114 kbps
– Users can “simultaneously” make calls and send data
– GPRS provides “always on” Internet access and the Multimedia
Messaging Service (MMS) whereby users can send rich text,
audio, video messages to each other
– Performance degrades as number of users increase
– GPRS is an example of 2.5G telephony – 2G service similar to
3G
L
A
B
GSM Channels
Downlink
Channels
Uplink
• Physical Channel: Each timeslot on a carrier is referred
to as a physical channel
• Logical Channel: Variety of information is transmitted
between the MS and BTS. Different types of logical
channels:
– Traffic channel
– Control Channel
L
A
B
GSM Frequencies
• Originally designed on 900MHz range, now also
available on 800MHz, 1800MHz and 1900 MHz
ranges.
• Separate Uplink and Downlink frequencies
– One example channel on the 1800 MHz frequency
band, where RF carriers are space every 200 MHz
UPLINK FREQUENCIES
1710 MHz
DOWNLINK FREQUENCIES
1785 MHz
1805 MHz
1880 MHz
UPLINK AND DOWNLINK FREQUENCY SEPARATED BY 95MHZ
L
A
B
GSM Architecture
L
A
B
Mobile Station (MS)
• MS is the user’s handset and has two parts
• Mobile Equipment
– Radio equipment
– User interface
– Processing capability and memory required for
various tasks
• Call signalling
• Encryption
• SMS
– Equipment IMEI number
• Subscriber Identity Module
L
IMEI:international mobile equipment identity
A
B
Subscriber Identity Module
•
•
•
•
•
•
A small smart card
Encryption codes needed to identify the subscriber
Subscriber IMSI number
Subscriber’s own information (telephone directory)
Third party applications (banking etc.)
Can also be used in other systems besides GSM, e.g.,
some WLAN access points accept SIM based user
authentication
L
A
B
Base Station Subsystem
• Transcoding Rate and Adaptation Unit (TRAU)
– Performs coding between the 64kbps PCM coding used in
the backbone network and the 13 kbps coding used for the
Mobile Station (MS)
• Base Station Controller (BSC)
– Controls the channel (time slot) allocation implemented by
the BTSes
– Manages the handovers within BSS area
– Knows which mobile stations are within the cell and
informs the MSC/VLR about this
• Base Transceiver System (BTS)
– Controls several transmitters
– Each transmitter has 8 time slots, some used for signaling,
on a specific frequency
L
A
B
Network and Switching
Subsystem
• The backbone of a GSM network is a telephone network with
additional cellular network capabilities
• Mobile Switching Center (MSC)
– An typical telephony exchange (ISDN exchange) which supports
mobile communications
– Visitor Location Register (VLR)
• A database, part of the MSC
• Contains the location of the active Mobile Stations
• Gateway Mobile Switching Center (GMSC)
– Links the system to PSTN and other operators
• Home Location Register (HLR)
– Contain subscriber information, including authentication
information in Authentication Center (AuC)
• Equipment Identity Register (EIR)
– International Mobile Station Equipment Identity (IMEI) codes for
e.g., blacklisting stolen phones
L
A
B
Home Location Register
• One database per operator
• Contains all the permanent subscriber information
– MSISDN (Mobile Subscriber ISDN number) is the
telephone number of the subscriber
– International Mobile Subscriber Identity (IMSI) is a 15 digit
code used to identify the subscriber
• It incorporates a country code and operator code
– IMSI code is used to link the MSISDN number to the
subscriber’s SIM (Subscriber Identity Module)
– Charging information
– Services available to the customer
• Also the subscriber’s present Location Area Code,
which refers to the MSC, which can connect to the MS.
L
A
B
Other Systems
• Operations Support System
– The management network for the whole GSM network
– Usually vendor dependent
– Very loosely specified in the GSM standards
• Value added services
– Voice mail
– Call forwarding
– Group calls
• Short Message Service Center
– Stores and forwards the SMS messages
– Like an E-mail server
– Required to operate the SMS services
L
A
B
Location Updates
• The cells overlap and usually a mobile
station can ‘see’ several transceivers
(BTSes)
• The MS monitors the identifier for the BSC
controlling the cells
• When the mobile station reaches a new
BSC’s area, it requests an location update
• The update is forwarded to the MSC,
entered into the VLR, the old BSC is
notified and an acknowledgement is
passed back
L
A
B
Handoff (Handover)
• When a call is in process, the changes in
location need special processing
• Within a BSS, the BSC, which knows the
current radio link configuration (including
feedbacks from the MS), prepares an
available channel in the new BTS
• The MS is told to switch over to the new BTS
• This is called a hard handoff
– In a soft handoff, the MS is connected to two
BTSes simultaneously
L
A
B
Roaming
• When a MS enters another operators network,
it can be allowed to use the services of this
operator
– Operator to operator agreements and contracts
– Higher billing
• The MS is identified by the information in the
SIM card and the identification request is
forwarded to the home operator
– The home HLR is updated to reflect the MS’s
current location
L
A
B
第二代 (2G , Second Generation)
32
L
A
B
第二代 (2G , Second Generation)(Cont.)
•
•
•
•
•
•
•
•
•
•
MSC : Mobile-service Switching Center
BSC : Base Station Controller
AUC : Authentication Center
BTS : Base Transceiver Station
HLR : Home Location Register
VLR : Visitor Location Register
EIR : Equipment Identity Register
PSTN: Public Switching Telephone Network
SGSN:Serving GPRS Support Node
GGSN:Gateway GPRS Support Node
33
L
A
B
第二代 (2G , Second Generation)(Cont.)
• IS-95 (窄頻CDMA):
• 由美國Qualcomm公司所發展,其存取技術是以編碼來區分
不同的傳輸,可讓相同的頻道能被多人共用
• 目前有許多國家採用,尤其是南韓
• IS-95 CDMA(Code Division Multiple Access)系統語音
編碼
QCELP( Qualcomm CELP ):語音編碼速率8.5 kbps
Sampling Frequency:8 kHz
Frame Length:20ms ( 160 samples )  50frames/sec
34
L
A
B
第二代 (2G , Second Generation)(Cont.)
• 2.5G,GPRS(General Packet Radio Service):
• HSCSD (High Speed Circuit-Switched Data):採用電路
交換,加強GSM並將資料速率增加至115Kbps,使用TDMA存
取技術
• GPRS (General Packet Radio Service) :採用封包交換
,加強GSM並將資料速率增加至168Kbps,使用TDMA存取技
術
• EDGE (Enhanced Data Rates for Global Evolution):
資料速率為384Kbps
• GPRS 為手機提供新的數據加值服務(new non-voice
value added service) 。如FTP (File Transfer
Protocol ), email, telnet, web browsing, chat
等。
35
L
A
B
第二代 (2G , Second Generation)(Cont.)
• GPRS 採分封交換(packet switching),以多時槽(time
slot)傳送封包,較經濟有效。數據率可為 14.4 kbps
(1 time slot) 到115.2 kbps (8 time slots) 。
–因GPRS 與 GSM 共用實體通道,故實務上 8 個全分
配給 GPRS 之機率不高。以 3 個time slot分配給
GPRS 估算,數據率為 43.2 kbps。
–目前GSM 之數據率為9.6 kbps,而短訊 (Short
Message Service)長160 characters。
–手機可經由 GSM + GPRS 連上 Internet 或
Intranet。
• GPRS 為手機提供遠端存取與控制智慧型家電。
36
L
A
B
第二代 (2G , Second Generation)(Cont.)
• GPRS 系統架構
MSC
/VLR
BSS
BTS
GMSC
PSTN
AUC
/HLR
GSM
BSC
GPRS
SGSN
GGSN
Inter
Net
–SGSN:Serving GPRS Support Node
–GGSN:Gateway GPRS Support Node
37
L
A
B
第二代 (2G , Second Generation)(Cont.)
• 從2G到3G之路
2G
2.5G
IS-95
IS-95B
3G
CDMA2000
HSCSD
3GPP2
GPRS
EDGE
WCDMA
TD-SCDMA
GSM
IS-136
PDC
EDGE
3GPP
38
L
A
B
第二代 (2G , Second Generation)(Cont.)
• 2G/2.5G網路如何升級到3G網路:
– GPRS網路是從GSM網路內加入GGSN與SGSN
– EDGE網路是沿用GPRS網路的無線頻譜,但改用更高速的無線傳輸
技術
– UMTS網路在新的發射頻譜上運用3G網路的WCDMA技術
– PDC網路跨過GPRS階段,直接採取WCDMA的寬頻技術
– 美國與韓國的CDMA系統採取cdma2000的方法
39
L
A
B
大綱
• 課程目標
• 第一代 (1G , First Generation)
• 第二代 (2G , Second Generation)
• 第三代 (3G , Third Generation)
• 第四代 (4G , Fourth Generation)
40
L
A
B
第三代 (3G , Third Generation)
• WCDMA (Wideband Code Division Multiple Access):標
準頻寬為5MHz。UTRAN系統就是使用WCDMA,其以GSM MAP
網路為基礎,在3G建置的投資上可以節省不少成本,且一
旦UMTS網路開始運作,所有GSM服務都會繼續存在。
• 進階的TDMA (Advanced Time division multiple
access) :UWC-136僅限北美地區使用
• 混合式的CDMA/TDMA (Hybrid CDMA/TDMA):目前已不被支
持,因為與UTRAN的TDD模式相同
• OFDM(Orthogonal frequency-division multiplexing):
因為功率上的問題,而未成為IMT-2000選擇的規格所採用
之技術
• IMT-2000 (International Mobile Telecommunications2000):為所有3G系統的總括規格
41
L
A
B
第三代 (3G , Third Generation)(Cont.)
• 發展3G標準的組織 :
– 3GPP
•以UTRA無線電介面為發展基礎,並加強GSM core network(即
GSM MAP)為主,也負責GSM規格的發展
•UTRA系統包括FDD (frequency division duplex)及TDD (time
division duplex)。
– 3GPP2
•倡導cdma2000的系統,也是以WCDMA技術為基礎。
•3GPP發展全新的規格,不受限於已經存在的標準。
•3GPP2則試著與IS-95系統相容(因為北美IS-95系統已經使用了
分配給3G的頻段)。
42
L
A
B
第三代 (3G , Third Generation)(Cont.)
• 從 1G 到 3G 行動通訊系統演進關係
1G
2G
2.5 G
3G
HSCSD
GSM
GPRS
WCDMA
EDGE
AMPS
IS-95A
CDMA
IS-95B
CDMA
IS-95C
CDMA
DAMPS
cdma2000
TD-SCDMA
43
L
A
B
Service Roadmap
Improved performance, decreasing cost of delivery
Broadband
in wide area
3G-specific services take
advantage of higher bandwidth
and/or real-time QoS
Video sharing
Video telephony
Real-time IP
A number of mobile
Multitasking
multimedia and games
services are bearer
WEB browsing
Multicasting
independent in nature
Corporate data access
Streaming audio/video
MMS picture / video
xHTML browsing
Application downloading
E-mail
Presence/location
Voice & SMS
Push-to-talk
EGPRS
473
kbps
WCDMA
2
Mbps
CDMA
2000EVDV
GPRS
171
kbps
CDMA
2000EVDO
GSM
9.6
kbps
CDMA
2000 1x
Typical
average bit
rates
(peak rates
higher)
HSDPA
1-10
Mbps
L
A
B
GSM Evolution to 3G
High Speed Circuit Switched Data
Dedicate up to 4 timeslots for data connection ~ 50 kbps
Good for real-time applications c.w. GPRS
Inefficient -> ties up resources, even when nothing sent
Not as popular as GPRS (many skipping HSCSD)
GSM
9.6kbps (one timeslot)
GSM Data
Also called CSD
GSM
HSCSD
Enhanced Data Rates for Global Evolution
Uses 8PSK modulation
3x improvement in data rate on short distances
Can fall back to GMSK for greater distances
Combine with GPRS (EGPRS) ~ 384 kbps
Can also be combined with HSCSD
GPRS
General Packet Radio Services
Data rates up to ~ 115 kbps
Max: 8 timeslots used as any one time
Packet switched; resources not tied up all the time
Contention based. Efficient, but variable delays
GSM / GPRS core network re-used by WCDMA (3G)
WCDMA
EDGE
L
A
B
UMTS
• Universal Mobile Telecommunications
System (UMTS)
• UMTS is an upgrade from GSM via GPRS or
EDGE
• The standardization work for UMTS is carried
out by Third Generation Partnership Project
(3GPP)
• Data rates of UMTS are:
– 144 kbps for rural
– 384 kbps for urban outdoor
– 2048 kbps for indoor and low range outdoor
• Virtual Home Environment (VHE)
L
A
B
UMTS Frequency Spectrum
• UMTS Band
– 1900-2025 MHz and 2110-2200 MHz for 3G
transmission
– In the US, 1710–1755 MHz and 2110–2155 MHz will
be used instead, as the 1900 MHz band was already
used.
L
A
B
UMTS Architecture
Mobile Station
ME
SIM
Base Station
Subsystem
BTS
BSC
Network Subsystem
MSC/
VLR
EIR
Other Networks
GMSC
PSTN
HLR
AUC
PLMN
RNS
ME
USIM
SD
+
Node
B
RNC
SGSN
GGSN
Internet
UTRAN
L
Note: Interfaces have been omitted for clarity purposes.
A
B
UMTS Network Architecture
• UMTS network architecture consists of three
domains
– Core Network (CN): Provide switching, routing
and transit for user traffic
– UMTS Terrestrial Radio Access Network
(UTRAN): Provides the air interface access
method for user equipment.
– User Equipment (UE): Terminals work as air
interface counterpart for base stations. The
various identities are: IMSI, TMSI, P-TMSI, TLLI,
MSISDN, IMEI, IMEISV
L
A
B
UTRAN
• Wide band CDMA technology is selected for UTRAN
air interface
– WCDMA
– TD-SCDMA
• Base stations are referred to as Node-B and control
equipment for Node-B is called as Radio Network
Controller (RNC).
– Functions of Node-B are
• Air Interface Tx/Rx
• Modulation/Demodulation
– Functions of RNC are:
•
•
•
•
•
•
Radio Resource Control
Channel Allocation
Power Control Settings
Handover Control
Ciphering
Segmentation and reassembly
L
A
B
3.5G (HSPA)
High Speed Packet Access (HSPA) is an amalgamation of
two mobile telephony protocols, High Speed Downlink
Packet Access (HSDPA) and High Speed Uplink Packet
Access (HSUPA), that extends and improves the
performance of existing WCDMA protocols
3.5G introduces many new features that enhances the
UMTS technology. 1xEV-DV already supports most of the
features that was provided in 3.5G. These include:
- Adaptive Modulation and Coding
- Fast Scheduling
- Backward compatibility with 3G
- Enhanced Air Interface
L
A
B
大綱
• 課程目標
• 第一代 (1G , First Generation)
• 第二代 (2G , Second Generation)
• 第三代 (3G , Third Generation)
• 第四代 (4G , Fourth Generation)
52
L
A
B
第四代 (4G , Fourth Generation)(Cont.)
• 4G網路必需具有下列特性
- 全IP封包交換網路:必需要IP化才能順利融入
現今的IP網路
- 更高的連線速率: 100 Mbps 以上 是很
基本的要求
- 無縫(Seamless)整合現行無線個人通訊 網路:
現行的無線網路如WWAN、WMAN、WLAN
及WPAN
- 多樣化的服務:必需能提供語音、數據及各
種格式的多媒體串流如高畫質電視、行動電
視及數位廣播等服務
53
L
A
B
4G (LTE)
• LTE stands for Long Term Evolution
• Next Generation mobile broadband
technology
• Promises data transfer rates of 100 Mbps
• Based on UMTS 3G technology
• Optimized for All-IP traffic
L
A
B
Advantages of LTE
L
A
B
Comparison of LTE Speed
L
A
B
Major LTE Radio Technogies
• Uses Orthogonal Frequency Division
Multiplexing (OFDM) for downlink
• Uses Single Carrier Frequency Division
Multiple Access (SC-FDMA) for uplink
• Uses Multi-input Multi-output(MIMO) for
enhanced throughput
• Reduced power consumption
• Higher RF power amplifier efficiency (less
battery power used by handsets)
L
A
B
第四代 (4G , Fourth Generation)(Cont.)
• LTE
-
LTE 是基於3GPP UMTS 版本8 (Release 8) or 9
IP封包交換網路架構
採用FDD或TDD分工及
使用簡單的架構及開放介面建立全IP的網路平
台
- LTE advanced :向滿足IMT-advanced 所規範需求
邁進,可向下通融LTE,尖峰速率1 Gbps
58
L
A
B
第四代 (4G , Fourth Generation)(Cont.)
• LTE實體層(Physical Layer)特性
59
L
A
B
第四代 (4G , Fourth Generation)(Cont.)
• FDD(Frequency-Division Duplexing)
訊框架構在FDD模式下,在頻率軸上以成對的方式進行分頻
使用,一頻帶用於下行頻寬(DL Bandwidth),另一頻帶用
於上行頻寬(UL Bandwidth)
60
L
A
B
第四代 (4G , Fourth Generation)(Cont.)
• TDD(Time Division Duplexing)
在TDD模式下,頻譜為上下行所共用,上下行的配置是以時間進行
分時配置,一部分時間安排下行傳送,另一部分則安排上行傳送
。在下行轉上行時,會有一段保護時間(Guard Period, GP)用於
接收與傳送間進行轉換
61
L
A
B
第四代 (4G , Fourth Generation)(Cont.)
• OFDMA(Orthogonal Frequency Division Multiple Access)
OFDMA可以被描述為一種結合頻域和時域多路存取
,使用大量的正交窄帶子載波(subcarrier)來
承載資料,使用者可以選擇信道條件較好的子通
道(subchannel)進行資料傳輸,一組使用者可
以同時接入到某一信道
62
L
A
B
第四代 (4G , Fourth Generation)(Cont.)
• OFDMA
180 kHz
Frequency
Resource
Block
User 3
12 Subcarriers
User 1
User 2
7 OFDMA
Symbol
Time
0.5ms
(1 slot)
63
1TTI = 1ms
L
A
B
第四代 (4G , Fourth Generation)(Cont.)
技術參數/
行動系統
第一代
第二代
第三代
第四代
使用頻率
400~800MHz
800~900MHz
2000 MHz
3000~6000MHz
30kbit/s
(Point frequency)
0.3~1.25Mbit/s
(Narrow band)
5Mbit/s
(Wide band)
10~100Mbit/s
(Broad band)
調變方式
FM
GMSK M-ary
QPSK
QAM MPSK
多路存取技術
FDMA
TDMA、CDMA
CDMA
CDMA+TDMA
蜂巢覆蓋能力
大
區
語
音
頻
服
寬
務
核心網路
功
能
電信交換網路
(自身獨立網路
)
地面通訊
中
區
小
區
微小區
語音簡訊(個別)
語音多媒體(個別)
多媒體
電信交換網路
(自身獨立網路)
電信交換網路
(自身獨立網路)、
IP網路(個別)
IP網路
地面通訊定位
通訊(包括衛星通訊
)定位控制、管理
地
面
終端資料速率
≤9.6kbit/s
≤5.6kbit/s
≤2Mbit/s
≤10Mbit/s
基本技術特徵
模擬訊號
處理技術
數位訊號
處理技術
智慧型訊號
處理技術
多功能
整合式技術
64
L
A
B
LTE Architecture
L
A
B
LTE vs UMTS
• Functional changes compared to the
current UMTS architecture
L
A
B
www.metis2020.com
Radio Access and Spectrum innovations for 5G
17th March 2014
Athens
Toward a 5G Mobile & Wireless
System Concept
Prof. Nancy Alonistioti, NKUA
On Behalf Dr. Afif Osseiran
METIS Project Coordinator
facebook.com/metis2020
twitter.com/metis2020
L
A
B
www.metis2020.com
The main objective of METIS is to lay the
foundation for, and to generate a European
consensus on the future global mobile and
wireless communications system.
facebook.com/metis2020
twitter.com/metis2020
L
A
B
Content
• Introduction
• 5G Challenges & Scenarios
• Toward a 5G System Concept
Introduction
› METIS
(Nov. 2012)
– The first stage of the 5G EU “missile”
– Contributed to the IMT.VISION Doc.
 Lay the foundation for
 Build an early global consensus for
5G mobile & wireless
communications
› Several global initiatives started in 2013
– China, Japan & Korea
– An incredible amount of Workshops & Events
Introduction
› METIS
(Nov. 2012)
– The first stage of the 5G EU “missile”
– Contributed to the IMT.VISION Doc.
 Lay the foundation for
 Build an early global consensus for
Prestandardization
activities
Exploratory
research
2012
WRC’12
2013
2014
2015
WRC’15
2016
5G mobile & wireless
communications
Standardization
activities
2017
2018
2019
WRC’18/19
Commercialization
2020
5G Challenges & Scenarios
L
A
B
5G Challenges
Avalanche of
Massive growth in
Large diversity of
Traffic Volume
Connected
Devices
Use cases
&
Requirements
Further expansion of
mobile broadband
“Communicating machines”
Device-to-Device
Communications
Additional traffic due to
communicating machines
“1000x in ten years”
Car-to-Car Comm.
“50 billion devices in 2020”
New requirements and
characteristics due to
communicating machines
L
A
B
METIS 5G Scenarios
Super real-time
Amazingly
fast
bit-rate,
delay
Best
Great Service
experience
in a crowd
follows you
Accessibility,
dense crowds
Accessibility,
mobility
and reliable
connections
delay,
reliability
Ubiquitous things
communicating
simple devices,
coverage
METIS Technical Objectives
1000x data
volume
1000x
higher mobile
data volumes
50/500 B
devices
Up to
10Gbps
10-100x
10-100x
higher number of typical end-user
connected devices
data rates
Few ms E2E
10 years
5x
10x
lower latency
longer battery life
for low-power devices
5G Future
Integration
of access technologies
into one seamless experience
Evolution
Complementary
new technologies
Revolution

Massive MIMO

Ultra-Dense
Networks



Respond to traffic explosion Extend to novel applications
Moving Networks
10 -100 x higher typical user rate
10 -100 x higher number of
connected devices
1000 x higher mobile data
volume per area
Higher Frequencies
10 x longer battery life
for low power M2M
5 x reduced E2E latency
Existing technologies in 2012
3G
4G
Wifi
D2D
Communications

Ultra-Reliable
Communications

Massive Machine
Communications
METIS 5G Requirements
Data rates
1-10Gbps (resp.100s of Mbps)
Capacity
36TB/month/user (resp. 500 GB)
Spectrum
Higher frequencies & flexibility
Energy
~10% of today’s consumption
Latency reduction
D2D capabilities
~ 1ms (e.g. tactile internet)
NSPS, ITS, resilience, …
Reliability
99.999% within time budget
Coverage
>20 dB of LTE (e.g. sensors)
Battery
Devices per area
Ultra-dense
networks
~10 years
300.000 per access node
Ultra Reliable
Comm.
Massive
Machines
L
A
B
Spectrum Scenario: Future
Landscape
• Dedicated licensed spectrum
complemented with various forms of
shared spectrum
“Toolbox” of different sharing enablers required
In order for 5G system to work under such scenarios
L
A
B
Toward 5G Concept:
Technology Components
Examples
Some 5G Technology
Components
300 MHz
3 GHz
30 GHz
300 GHz
New spectrum bands and access methods
Nomadic nodes
Buildings
Bus stop
Park
area
Lamp posts
nodes
Dense and moving networks
Multi-hop wireless backhaul
Context-aware
interference and mobility
management
VL-MIMO
Massive multi-antenna systems
Air interfaces for new
applications and
reduced signaling
Mobile
B
Device-to-device
L
A
METIS 5G Concept
› A user-centric 5G system concept that efficiently
integrates:
– the support of MMC and URC,
– the support of scalable data rates including very high data
rates,
– the support of scalable data rates including very low
latencies,
› for service provision to both consumers and
devices/machines.
› The system that fulfils these requirements be flexible to
provide different services at different times.
– The system architecture must provide native support for
extreme Mobile Broadband (MBB) communication, MMC,
URC, D2D, MN, and UDN.
L
A
B
5G Concept: development
Best
effort
D2D
Critical
Direct
Air
Interface
#1
M2M
Air
Interface
#2
Backhaul
1000x
traffic
MMC
Gateway
100x
rate
100x
devices
Backhaul
to moving
MN
V2X
Nomadic
nodes
10x
battery
Backhaul
UDN
Air
interface
5x lower
latency
SON
URC-S
URC
Base
Layer
Architecture
URC-E
Goals
Air
Interface
#N
METIS Concept
URC-L
Five Horizontal Topics (HTs): (1) D2D – Direct Device-to-Device Communication, (2) MMC – Massive
Machine Communication, (3) MN – Moving Networks, (4) UDN – Ultra-Dense Networks, and (5) URC – UltraReliable Communication.
L
A
B
Useful Links
•
•
A. Osseiran et al, Scenarios for the 5G Mobile and Wireless
Communications: the Vision of the METIS Project, IEEE Comm. Mag., May,
2014 --To appear on https://www.metis2020.com/documents/publications/
Deliverable D1.1, “Scenarios, requirements and KPIs for 5G mobile and
wireless system”, June 2013
• Deliverable D2.1, “Requirement analysis and design approaches for 5G air
interface”, Sept. 2013
• Deliverable D3.1, “Positioning of multi-node/multi-antenna transmission
technologies”, Aug. 2013
• Deliverable D5.1, “Intermediate description of the spectrum needs and
usage principles”, Sep. 2013
• Deliverable D4.1,“Summary on preliminary trade-off investigations and first
set of potential network-level solutions”, Nov. 2013
• Deliverable D6.1,“Simulation guidelines”, Nov. 2013
All deliverables can be downloaded from
https://www.metis2020.com/documents/deliverables/
Thank You
Back up Slides
METIS
5G
Architecture
Amazingly Fast scenario
Local break out & Distributed mobile core
functions
Accelerated content delivery
Tech. Dependent
high data rates & network capacities
Ultra-Dense Networks (UDN)
ISD about 10 m
>= 1 radio nodes per room
D2D, MMC (Massive Machine Comm.), Moving
Networks (MN), UDN Ultra-reliable Comm. (URC)
C-RAN +
Mobile Core – Distributed Functions
(incl. optional local breakout or CDN)
C-RAN
D2D / URC
CoMP
MMC
Massive
MIMO
Internet
MN
UDN
Macro radio node*
Small cell radio node*, e.g.
micro, (ultra-)pico, femto
Note: Indoor cells not shown!
* Only Remote Radio Units (RRUs) assumed.
…
Aggregation Network (local, regional, national)
Centralized
or
distributed?
Mobile Core
– Centralized
Functions
+ OAM
Wireless access
Wireless fronthaul
Wired fronthaul
Wired backhaul
Internet access
Massive MIMO: CSI Error
Example of contribution:
30 Gbps simulation using 11 GHz band
measured 24x24 MIMO channel
Transmission scheme
24x24 MIMO-OFDM eigenmode
Signal bandwidth
400 MHz
Subcarrier spacing
195 kHz
Maximum bit rate
35.3 Gbps (64QAM, 3/4)
Investigation points:
› Performance analysis of massive
MIMO in higher frequency bands
› Impact of CSI error and hardware
impairments
Measurement Environment/Data
12-element array
with dual polarization
Sector antenna
3 dB beamwidth.
Antenna gain: 15 dBi
* This channel measurement was conducted in Ishigaki City
in partnership with Tokyo Inst. of Tech. in Japanese national project
Omni-antenna (H)
Antenna gain: 4 dBi
12-element array
with dual polarization
Beyond Uplink & Downlink:
two-way comm.
• Traditionally, the
design of the UL and
the DL is decoupled
• Wireless network
coding allows
optimization of the
two-way
communication
instead of decoupling
FBS
FBS
BS
FBS
L
A
B
HT: Device-to-Device (D2D) Communication
• Description: Controlled by the
network, direct D2D communication
allows direct communication
between mobile devices and
exchange data packets between
devices locally
› Objective: Integrate direct D2D
operation modes as a part of the
overall METIS systems
Push shopping offer to
users with D2D (general
or personalized)
• Motivation
– End user benefits: Reduced
power consumption; Increased
throughput; Discovery of
geographically close activities;
– Operator benefits: Increased
spectrum efficiency; Extended
coverage; Growing number of
devices to be connected in the
future; Internet of Things
L
A
B
參考資料
• Structure of a GSM network
https://en.wikipedia.org/wiki/GSM
• LTE TDD/FDD
http://www.mem.com.tw/article_content.asp?sn=1112020004
• 顏春煌「行動與無線通訊」,2013
碁峯資訊股份有限公司 發行
91
L
A
B