Transcript Exercise 2x

MEC-E5005 Fluid Power Dynamics L (3 cr)
Weekly rehearsals, autumn 2016 (7.10.2016 -16.12.2016)
Location: Maarintalo building (mostly Maari-E classroom)
Time: Fridays 10:15-13:00 (14:00) o’clock
Schedule:
Staff
Asko Ellman, prof. (TTY)
Jyrki Kajaste, university teacher
Contact person:
Heikki Kauranne, university teacher
7.10. Exercise, R-building
14.10. Exercise, Maarintalo
21.10. Exercise
(28.10. Evaluation week for Period I ?)
4.11. Lecture (K1, bulding K202)
11.11. Exercise Milestone: Cylinder model benchmarking/checking
18.11. Exercise
25.11. Exercise Milestone: Valve model benchmarking/checking
2.12. Exercise Milestone: Seal model benchmarking/checking
9.12. Exercise Milestone: Personal simulation work
16.12. Exercise Discussion (Evaluation week for Period II)
Simulation of Fluid Power
•
•
•
•
Modeling of fluid properties
Modeling of valves
Modeling of actuators
Modeling of fluid power systems
Simulation work
• Cylinder system
–
–
–
–
–
Hydraulic cylinder (actuator 1)
Proportional control valve (Regel Ventil)
Load (mass)
Control system (open loop control)
Hydraulic motor (actuator 2)
• Control system
– PID control of systems
• Position control
• Velocity control
Hydraulic circuit to be modeled 1
M
p/U
pA
pB
p/U
x
CONTROL
U
Hydraulic circuit to be modeled 2
M
p/U
pA
pB
p/U
x
CONTROL
U
POSITION
CONTROL
Hydraulic circuit to be modeled 3
, 
p/U
pA
pB
p/U
CONTROL
U
VELOCITY
AND
POSITION
CONTROL
Simulation of dynamics
• Phenomena are time dependent
• Differential equations are solved
• The core of fluid power simulation is solving of
the pressure of a fluid volume (pipe, cylinder
tms.) by integration
– ”Hydraulic capacitance”
Simulation of fluid power - variables
• Essential variables in fluid power technology are
– Flow Rate qv [m3/s]
– Pressure p [Pa], [N/m2]
• The variables in question define the hydraulic
power
• P= pqv (power of a hydraulic component,
pump, valve etc.)
– p pressure difference over a component
– q flow rate through a component
Modeling of a system
pOUT
qv1IN
V
qvOUT
qv2IN
”Fluid volume”: pressure is solved,
flow rates as inputs
p1IN
p2IN
”Valve”: flow rate is solved,
pressures as inputs
• Common way to realize a model of a system is to divide it into
– Fluid volumes (pressure is essential to these volumes)
– Components between fluid volumes (”valves” ja ”pumps”, flow rate is
essential to these volumes)
Building up a system of ”fluid
volumes” and ”valves” (flow sources)
V1
V2
V3
”pump” – ”pipe” – ”valve” – ”pipe” – ”valve” – ”actutor”
Equation for pressure generation combination
• The mechanisms in fluid power which may alter the pressure in a
chamber include a) change in fluid amount b) change in volume.
• ”Equation for pressure generation” may be expressed as follows:
a)
b)
dp K f 
V 


q

v
dt V0 
t 
Negligible changes in total volume• (V0= constant)
Significant changes in total volume (V)
dp
Kf

dt V0  V
Textbook p. 18
Equation 25
Ellman & Linjama: Modeling of Fluid Power Systems
V 

 qv  t 
This equation can
be applied in
hydraulic cylinder
calculations.
Cylinder – variables
LEAKAGE
Chamber pressures (time derivatives),
textbook p 75
LEAKAGE
xmax
pA
pB
x
dx/dt, x
Variables
F
qvA
qvB
Input
- Flow rates
- Piston speed
- Absolute position of piston
Output
- Chamber pressures
- Piston force (net pressure force)
Cylinder – parameters
LEAKAGE
LEAKAGE
AB(xmax-x) volume in chamber B
• xmax-x length of liquid column
xmax
x
Parameters – constants(?)
A chamber
- Beff effective bulk modulus
- pressure, temperature, free air(!) and elasticity of walls
- V0A ”dead volume” of chamber + liquid volume in pipes
- AA piston area
AAx volume in chamber A
• x length of liquid column
B chamber
- Beff effective bulk modulus
- V0B ”dead volume” of chamber + liquid volume in pipes
- AB difference of piston and piston rod areas (annulus)
Cylinder – liquid volumes
LEAKAGE
LEAKAGE
AB(xmax-x) volume in chamber B
• xmax-x length of liquid column
xmax
Constant and changing volumes
x
pipes
A chamber
- V0 ”dead volume” of chamber + liquid volume in pipes
- AAx piston position dependent extra volume
- x ”absolute position of piston”
B chamber
V0 ”dead volume” of chamber + liquid volume in pipes
- ABxmax B chamber maximum volume (piston at end position)
- ABx liquid volume displaced by annular piston
- x ”absolute position of piston”
AAx volume in chamber A
• x length of liquid column
Chamber A realization, example
3
4
2
1
To get absolute position x
for piston
1. integrate piston
velocity to get get
change in position
related to start point
2. add start position
value.
2
3
5
4
1
5 Piston leakage is not included.
Chamber B realization, example
3
4
2
1
2
3
5
4
1
(xmax-x)
AB(xmax-x)
length of liquid piston
volume of liquid piston
5 Piston leakage is not included.
Modeling of a system
pOUT
q1IN
V
qOUT
q2IN
”Fluid volume”: pressure is solved,
flow rates as inputs
p1IN
p2IN
”Valve”: flow rate is solved,
pressures as inputs
• Common way to realize a model of a system is to divide it into
– Fluid volumes (pressure is essential to these volumes)
– Components between fluid volumes (”valves” ja ”pumps”, flow rate is
essential to these volumes)
Phase 2
Hydraulic circuit modeling
Cylinder
- qA, qB, dx/dt in
- pA, pB, F
out
Inertia mass
- F
- dx/dt, x
F
M
(dV/dt) dx/dt
in
out
qA
pA
pB
dx/dt, x
qB
CONTROL
U
Building up a system of ”fluid
volumes” and ”valves” (flow sources)
Mechanics
V1
V2
V3
”pump” – ”pipe” – ”valve” – ”pipe” – ”valve” – ”actutor”
Net force of a cylinder
Hydraulic force
F= pAAA-pBAB
Net force is affected also by seal forces:
- Spring force related to bending of seals
- Friction force related to sliding
- Seal model will be constructed later!
Load model
•
Input: force
– connected to: cylinder net force
• Output: state of motion (piston velocity dx/dt and
Multiplication/division by a constant
position x)
– Connected to: state of motion  cylinder chambers’
Initial condition can be
volume change
included
In our simulation work the load is plainly inertia mass. The
state of motion can be calculated by applying Newton’s
second law.
F  ma
OR
Initial value
Integrating input signal twice
where m = mass of an object ja a = acceleration”
In our model we are interested in the state of motion of the load and piston ( piston velocity
dx/dt and position x). Thus …
- At first solve the acceleration of load a
- Integrate the acceleration -> velocity (change in velocity)
- Velocity= 0 at the start of the simulation (unless you give it another initial value)
- Inegrate velocity or integrate acceleration twice to get the change in position
-
At the start of the simulation position = x0 -> take that into account to get the absolute position value
Benchmarking 1
Cylinder model testAttention!
Test values fo parameters
Do not connect seal model!
•
Cylinder size 32/201000  AA ja AB (check piston area values in the Matlab workspace)
•
B= 1.6109 Pa
•
x0= 0.5 m
•
Extra liquid volumes at cylinder ends: 3.2 cm3 (piston side), 2.0 cm3 (rod side)
•
Pipes d_pipe= 0.012 m and L_pipe= 0.75 m
1. ”plug cylinder ports” and ”push/pull” piston with rod, use velocities
a) dx/dt = 110-3 m/s and b) dx/dt = -110-3 m/s
-> test pressure changes using 10 second simulations
-> test force changes using 10 second simulations
2. ”lock” the piston rod (dx/dt= 0) and
2.1 connect to chamber A flow rate input qA= 110-6 m3/s
2.2 connect to chamber B flow rate input qB= 110-6 m3/s
-> test pressure changes using 10 second simulations
-> test force changes using 10 second simulations
3. connect the following signal values to piston velocity and flow rates
dx/dt = 110-3 m/s
qA= +dx/dt  AA
qB= -dx/dt  AB
-> test pressure changes using 10 second simulations
-> test force changes using 10 second simulations
Testing of cylinder model
Use for example Display module to check the end values of signals
p_A_lopussa
q_A_testi
q_A
q_B_testi
q_A
p_A
q_B
q_B
p_B
v_testi
dx/dt
v
p_A ja p_B
F
Sylinteri
p_B_lopussa
F_paine
Testi 1a
v= 1e-3
Testi 1b
v= -1e-3
Testi 2
v= 0
Testi 3
v= 1e-3
Attention!
Do not connect seal model!
1
s
Integrator
delta_x
Test 1a Testi 1a
p_A= xxx bar
p_A= ________
p_B= yyy bar bar
p_B= ________
F= zzz kN bar
F= __________ N
F_lopussa
Testi 2
p_A= xxx bar
p_B= yyy bar
F= zzz kN
Testi 1b
Testi 3
p_A= xxx bar
p_A= xxx bar
p_B= yyy bar
Test 1b p_B= yyy bar
F=
zzz
kN
p_A= ________ bar F= zzz kN
p_B= ________ bar
F= __________ N
Test 2
p_A= ________ bar
p_B= ________ bar
F= __________ N
Test 3
p_A= ________ bar
p_B= ________ bar
F= __________ N