Chapter 6 slides, Computer Networking, 3rd edition
Download
Report
Transcript Chapter 6 slides, Computer Networking, 3rd edition
Wireless Networks
ECS 152A
Acknowledgement: slides from Kurose and Ross
1
Wireless and Mobile Networks
Background:
# wireless (mobile) phone subscribers now
exceeds # wired phone subscribers!
computer nets: laptops, palmtops, PDAs,
Internet-enabled phone promise anytime
untethered Internet access
two important (but different) challenges
communication over wireless link
handling mobile user who changes point of
attachment to network
2
Chapter 6 outline
6.1 Introduction
Wireless
6.2 Wireless links,
characteristics
6.3 IEEE 802.11
wireless LANs (“wi-fi”)
6.4 Cellular Internet
Access
architecture
standards (e.g., GSM)
Mobility
6.5 Principles:
addressing and routing
to mobile users
6.6 Mobile IP
6.7 Handling mobility in
cellular networks
6.8 Mobility and higherlayer protocols
6.9 Summary
3
Elements of a wireless network
network
infrastructure
wireless hosts
laptop, PDA, IP phone
run applications
may be stationary
(non-mobile) or mobile
wireless does not
always mean mobility
4
Elements of a wireless network
network
infrastructure
base station
typically connected to
wired network
relay - responsible
for sending packets
between wired
network and wireless
host(s) in its “area”
e.g., cell towers
802.11 access
points
5
Elements of a wireless network
network
infrastructure
wireless link
typically used to
connect mobile(s) to
base station
also used as backbone
link
multiple access
protocol coordinates
link access
various data rates,
transmission distance
6
Characteristics of selected wireless link
standards
54 Mbps
5-11 Mbps
802.11{a,g}
802.11b
.11 p-to-p link
1 Mbps
802.15
3G
UMTS/WCDMA, CDMA2000
384 Kbps
2G
IS-95 CDMA, GSM
56 Kbps
Indoor
Outdoor
Mid range
outdoor
Long range
outdoor
10 – 30m
50 – 200m
200m – 4Km
5Km – 20Km
7
Elements of a wireless network
network
infrastructure
infrastructure mode
base station connects
mobiles into wired
network
handoff: mobile
changes base station
providing connection
into wired network
8
Elements of a wireless network
Ad hoc mode
no base stations
nodes can only
transmit to other
nodes within link
coverage
nodes organize
themselves into a
network: route among
themselves
9
Characteristics of Wireless Systems
Spectrum is limited
We cannot reproduce spectrum
A few GHz of “good” spectrum for all applications
Wireless is a shared medium
Broadcast nature
Interference
Unpredictable, unreliable, time-varying
Wireless vs. mobility
Limited battery
Multi-user diversity
10
Wireless Link Characteristics
Differences from wired link ….
decreased
signal strength: radio signal
attenuates as it propagates through matter
(path loss)
interference from other sources: standardized
wireless network frequencies (e.g., 2.4 GHz)
shared by other devices (e.g., phone); devices
(motors) interfere as well
multipath propagation: radio signal reflects off
objects ground, arriving ad destination at
slightly different times
…. make communication across (even a point to point)
wireless link much more “difficult”
11
Wireless network characteristics
Multiple wireless senders and receivers create
additional problems (beyond multiple access):
C
A
B
A
B
Hidden terminal problem
C
C’s signal
strength
A’s signal
strength
space
B, A hear each other
Signal fading:
A, C can not hear each other
B, C hear each other
B, C hear each other
B, A hear each other
means A, C unaware of their
interference at B
A, C can not hear each other
interferring at B
12
Scarce Radio Resource
Wireline networks
High bandwidth and reliable channel
Core router: Gbps-Tbps
Wireless systems
Limited nature resource (radio frequency)
Capacity is limited by available frequency
3G data rate: up to 2Mbps
Requirement: spectrum efficiency
13
Channel Conditions
Decides transmission performance
Determined by
Strength of desired signal
Noise level
• Interference from other transmissions
• Background noise
Time-varying and location-dependent.
14
Interference and Noise
Noise
Interference
Interference
Desired
Signal
Interference
15
Propagation Environment
Weak
Shadowing
Strong
Path Loss
Multi-path Fading
16
Time-varying Channel
Conditions
Due to users’ mobility and variability in the
propagation environment, both desired signal and
interference are time-varying and locationdependent
A measure of channel quality:
SINR (Signal to Interference plus Noise Ratio)
17
Illustration of Channel
Conditions
Based on Lee’s path loss model, log-normal shadowing, and Raleigh fading
18
Performance vs. Channel Condition
Voice users: better voice quality at high
SINR for a fixed transmission rate;
Data users: higher transmission rate at
high SINR for a given bit error rate;
Adaptation techniques are specified in 3G
standards.
TDMA: adaptive coding and modulation
CDMA: variable spreading and coding
19
Chapter 6 outline
6.1 Introduction
Wireless
6.2 Wireless links,
characteristics
CDMA
6.3 IEEE 802.11
wireless LANs (“wi-fi”)
6.4 Cellular Internet
Access
architecture
standards (e.g., GSM)
Mobility
6.5 Principles:
addressing and routing
to mobile users
6.6 Mobile IP
6.7 Handling mobility in
cellular networks
6.8 Mobility and higherlayer protocols
6.9 Summary
20
IEEE 802.11 Wireless LAN
802.11b
2.4-5 GHz unlicensed
radio spectrum
up to 11 Mbps
direct sequence spread
spectrum (DSSS) in
physical layer
• all hosts use same
chipping code
widely deployed, using
base stations
802.11a
5-6 GHz range
up to 54 Mbps
802.11g
2.4-5 GHz range
up to 54 Mbps
All use CSMA/CA for
multiple access
All have base-station
and ad-hoc network
versions
21
802.11 LAN architecture
wireless host communicates
Internet
AP
hub, switch
or router
BSS 1
AP
BSS 2
with base station
base station = access
point (AP)
Basic Service Set (BSS)
(aka “cell”) in infrastructure
mode contains:
wireless hosts
access point (AP): base
station
ad hoc mode: hosts only
22
802.11: Channels, association
802.11b: 2.4GHz-2.485GHz spectrum divided into
11 channels at different frequencies
AP admin chooses frequency for AP
interference possible: channel can be same as
that chosen by neighboring AP!
host: must associate with an AP
scans channels, listening for beacon frames
containing AP’s name (SSID) and MAC address
selects AP to associate with
may perform authentication [Chapter 8]
will typically run DHCP to get IP address in AP’s
subnet
23
802.11: mobility within same subnet
H1 remains in same IP
subnet: IP address
can remain same
switch: which AP is
associated with H1?
self-learning
(Ch. 5):
switch will see frame
from H1 and
“remember” which
switch port can be
used to reach H1
router
hub or
switch
BBS 1
AP 1
AP 2
H1
BBS 2
24
802.15: personal area network
less than 10 m diameter
replacement for cables
(mouse, keyboard,
headphones)
ad hoc: no infrastructure
master/slaves:
slaves request permission to
send (to master)
master grants requests
802.15: evolved from
Bluetooth specification
2.4-2.5 GHz radio band
up to 721 kbps
P
S
P
radius of
coverage
M
S
P
S
P
M Master device
S Slave device
P Parked device (inactive)
25
Chapter 6 outline
6.1 Introduction
Wireless
6.2 Wireless links,
characteristics
CDMA
6.3 IEEE 802.11
wireless LANs (“wi-fi”)
6.4 Cellular Internet
Access
architecture
standards (e.g., GSM)
Mobility
6.5 Principles:
addressing and routing
to mobile users
6.6 Mobile IP
6.7 Handling mobility in
cellular networks
6.8 Mobility and higherlayer protocols
6.9 Summary
26
Components of cellular network architecture
MSC
cell
connects cells to wide area net
manages call setup (more later!)
handles mobility (more later!)
covers geographical
region
base station (BS)
analogous to 802.11 AP
mobile users attach
to network through BS
air-interface:
physical and link layer
protocol between
mobile and BS
Mobile
Switching
Center
Public telephone
network, and
Internet
Mobile
Switching
Center
wired network
27
Cellular networks: the first hop
Two techniques for sharing
mobile-to-BS radio
spectrum
combined FDMA/TDMA:
divide spectrum in
frequency channels, divide
each channel into time
slots
frequency
bands
CDMA: code division
multiple access
time slots
28
Cellular standards: brief survey
2G systems: voice channels
IS-136 TDMA: combined FDMA/TDMA (north
america)
GSM (global system for mobile communications):
combined FDMA/TDMA
most widely deployed
IS-95 CDMA: code division multiple access
GSM
Don’t drown in a bowl
of alphabet soup: use this
for reference only
29
Cellular standards: brief survey
2.5 G systems: voice and data channels
for those who can’t wait for 3G service: 2G extensions
general packet radio service (GPRS)
evolved from GSM
data sent on multiple channels (if available)
enhanced data rates for global evolution (EDGE)
also evolved from GSM, using enhanced modulation
Date rates up to 384K
CDMA-2000 (phase 1)
data rates up to 144K
evolved from IS-95
30
Cellular standards: brief survey
3G systems: voice/data
Universal Mobile Telecommunications Service (UMTS)
GSM next step, but using CDMA
CDMA-2000
….. more (and more interesting) cellular topics due to
mobility (stay tuned for details)
31
Chapter 6 outline
6.1 Introduction
Wireless
6.2 Wireless links,
characteristics
CDMA
6.3 IEEE 802.11
wireless LANs (“wi-fi”)
6.4 Cellular Internet
Access
architecture
standards (e.g., GSM)
Mobility
6.5 Principles:
addressing and routing
to mobile users
6.6 Mobile IP
6.7 Handling mobility in
cellular networks
6.8 Mobility and higherlayer protocols
6.9 Summary
32
What is mobility?
spectrum of mobility, from the network perspective:
no mobility
mobile wireless user, mobile user,
using same access
connecting/
point
disconnecting
from network
using DHCP.
high mobility
mobile user, passing
through multiple
access point while
maintaining ongoing
connections (like cell
phone)
33
Mobility: Vocabulary
home network: permanent
“home” of mobile
(e.g., 128.119.40/24)
Permanent address:
address in home
network, can always be
used to reach mobile
e.g., 128.119.40.186
home agent: entity that will
perform mobility functions on
behalf of mobile, when mobile
is remote
wide area
network
correspondent
34
Mobility: more vocabulary
Permanent address: remains
constant (e.g., 128.119.40.186)
visited network: network
in which mobile currently
resides (e.g., 79.129.13/24)
Care-of-address: address
in visited network.
(e.g., 79,129.13.2)
wide area
network
correspondent: wants
to communicate with
mobile
home agent: entity in
visited network that
performs mobility
functions on behalf
of mobile.
35
How do you contact a mobile friend:
Consider friend frequently changing
addresses, how do you find her?
I wonder where
Alice moved to?
search all phone
books?
call her parents?
expect her to let you
know where he/she is?
36
Mobility: approaches
Let routing handle it: routers advertise permanent
address of mobile-nodes-in-residence via usual
routing table exchange.
routing tables indicate where each mobile located
no changes to end-systems
Let end-systems handle it:
indirect routing: communication from
correspondent to mobile goes through home
agent, then forwarded to remote
direct routing: correspondent gets foreign
address of mobile, sends directly to mobile
37
Mobility: approaches
Let routing handle it: routers advertise permanent
not
address of mobile-nodes-in-residence
via usual
scalable
routing table exchange.
to millions of
routing tables indicate
mobiles where each mobile located
no changes to end-systems
let end-systems handle it:
indirect routing: communication from
correspondent to mobile goes through home
agent, then forwarded to remote
direct routing: correspondent gets foreign
address of mobile, sends directly to mobile
38
Mobility: registration
visited network
home network
2
1
wide area
network
foreign agent contacts home
agent home: “this mobile is
resident in my network”
mobile contacts
foreign agent on
entering visited
network
End result:
Foreign agent knows about mobile
Home agent knows location of mobile
39
Mobility via Indirect Routing
foreign agent
receives packets,
forwards to mobile
home agent intercepts
packets, forwards to
foreign agent
home
network
visited
network
3
wide area
network
correspondent
addresses packets
using home address
of mobile
1
2
4
mobile replies
directly to
correspondent
40
Indirect Routing: comments
Mobile uses two addresses:
permanent address: used by correspondent (hence
mobile location is transparent to correspondent)
care-of-address: used by home agent to forward
datagrams to mobile
foreign agent functions may be done by mobile itself
triangle routing: correspondent-home-networkmobile
inefficient when
correspondent, mobile
are in same network
41
Indirect Routing: moving between networks
suppose mobile user moves to another
network
registers with new foreign agent
new foreign agent registers with home agent
home agent update care-of-address for mobile
packets continue to be forwarded to mobile (but
with new care-of-address)
mobility, changing foreign networks
transparent: on going connections can be
maintained!
42
Mobility via Direct Routing
correspondent forwards
to foreign agent
foreign agent
receives packets,
forwards to mobile
home
network
4
wide area
network
2
correspondent
requests, receives
foreign address of
mobile
visited
network
1
3
4
mobile replies
directly to
correspondent
43
Mobility via Direct Routing: comments
overcome triangle routing problem
non-transparent to correspondent:
correspondent must get care-of-address
from home agent
what if mobile changes visited network?
44
Accommodating mobility with direct routing
anchor foreign agent: FA in first visited network
data always routed first to anchor FA
when mobile moves: new FA arranges to have data
forwarded from old FA (chaining)
foreign net visited
at session start
wide area
network
anchor
foreign
agent
1
2
4
5
correspondent
agent
correspondent
3
new foreign
agent
new
foreign
network
45
Chapter 6 outline
6.1 Introduction
Wireless
6.2 Wireless links,
characteristics
CDMA
6.3 IEEE 802.11
wireless LANs (“wi-fi”)
6.4 Cellular Internet
Access
architecture
standards (e.g., GSM)
Mobility
6.5 Principles:
addressing and routing
to mobile users
6.6 Mobile IP
6.7 Handling mobility in
cellular networks
6.8 Mobility and higherlayer protocols
6.9 Summary
46
Mobile IP
RFC 3220
has many features we’ve seen:
home agents, foreign agents, foreign-agent
registration, care-of-addresses, encapsulation
(packet-within-a-packet)
three components to standard:
indirect routing of datagrams
agent discovery
registration with home agent
47
Mobile IP: indirect routing
foreign-agent-to-mobile packet
packet sent by home agent to foreign
agent: a packet within a packet
dest: 79.129.13.2
dest: 128.119.40.186
dest: 128.119.40.186
Permanent address:
128.119.40.186
dest: 128.119.40.186
Care-of address:
79.129.13.2
packet sent by
correspondent
48
Mobile IP: agent discovery
agent advertisement: foreign/home agents advertise
service by broadcasting ICMP messages (typefield = 9)
0
type = 9
24
checksum
=9
code = 0
=9
H,F bits: home
and/or foreign agent
R bit: registration
required
16
8
standard
ICMP fields
router address
type = 16
length
registration lifetime
sequence #
RBHFMGV
bits
reserved
0 or more care-ofaddresses
mobility agent
advertisement
extension
49
Mobile IP: registration example
home agent
HA: 128.119.40.7
foreign agent
COA: 79.129.13.2
visited network: 79.129.13/24
ICMP agent adv.
COA: 79.129.13.2
….
registration req.
COA: 79.129.13.2
HA: 128.119.40.7
MA: 128.119.40.186
Lifetime: 9999
identification: 714
encapsulation format
….
Mobile agent
MA: 128.119.40.186
registration req.
COA: 79.129.13.2
HA: 128.119.40.7
MA: 128.119.40.186
Lifetime: 9999
identification:714
….
registration reply
time
HA: 128.119.40.7
MA: 128.119.40.186
Lifetime: 4999
Identification: 714
encapsulation format
….
registration reply
HA: 128.119.40.7
MA: 128.119.40.186
Lifetime: 4999
Identification: 714
….
50
Components of cellular network architecture
recall:
correspondent
wired public
telephone
network
MSC
MSC
MSC
MSC
MSC
different cellular networks,
operated by different providers
51
Handling mobility in cellular networks
home network: network of cellular provider you
subscribe to (e.g., Sprint PCS, Verizon)
home location register (HLR): database in home
network containing permanent cell phone #,
profile information (services, preferences,
billing), information about current location
(could be in another network)
visited network: network in which mobile currently
resides
visitor location register (VLR): database with
entry for each user currently in network
could be home network
52
GSM: indirect routing to mobile
home
network
HLR
2
home MSC consults HLR,
gets roaming number of
mobile in visited network
correspondent
home
Mobile
Switching
Center
1
3
VLR
Mobile
Switching
Center
4
Public
switched
telephone
network
call routed
to home network
home MSC sets up 2nd leg of call
to MSC in visited network
mobile
user
visited
network
MSC in visited network completes
call through base station to mobile
53
GSM: handoff with common MSC
Handoff goal: route call via
new base station (without
interruption)
reasons for handoff:
VLR Mobile
Switching
Center
old
routing
old BSS
new
routing
new BSS
stronger signal to/from new
BSS (continuing connectivity,
less battery drain)
load balance: free up channel
in current BSS
GSM doesn’t mandate why to
perform handoff (policy), only
how (mechanism)
handoff initiated by old BSS
54
GSM: handoff with common MSC
VLR Mobile
Switching
Center 2
4
1
8
old BSS
5
7
3
6
new BSS
1. old BSS informs MSC of impending
handoff, provides list of 1+ new BSSs
2. MSC sets up path (allocates resources)
to new BSS
3. new BSS allocates radio channel for
use by mobile
4. new BSS signals MSC, old BSS: ready
5. old BSS tells mobile: perform handoff to
new BSS
6. mobile, new BSS signal to activate new
channel
7. mobile signals via new BSS to MSC:
handoff complete. MSC reroutes call
8 MSC-old-BSS resources released
55
GSM: handoff between MSCs
anchor MSC: first MSC
visited during cal
home network
correspondent
Home
MSC
call remains routed
through anchor MSC
new MSCs add on to end
anchor MSC
PSTN
MSC
MSC
MSC
(a) before handoff
of MSC chain as mobile
moves to new MSC
IS-41 allows optional
path minimization step
to shorten multi-MSC
chain
56
GSM: handoff between MSCs
anchor MSC: first MSC
visited during cal
home network
correspondent
Home
MSC
call remains routed
through anchor MSC
new MSCs add on to end
anchor MSC
PSTN
MSC
MSC
MSC
(b) after handoff
of MSC chain as mobile
moves to new MSC
IS-41 allows optional
path minimization step
to shorten multi-MSC
chain
57
Mobility: GSM versus Mobile IP
GSM element
Comment on GSM element
Mobile IP element
Home system
Network to which the mobile user’s permanent
phone number belongs
Home network
Gateway Mobile
Switching Center, or
“home MSC”. Home
Location Register
(HLR)
Home MSC: point of contact to obtain routable
address of mobile user. HLR: database in
home system containing permanent phone
number, profile information, current location of
mobile user, subscription information
Home agent
Visited System
Network other than home system where
mobile user is currently residing
Visited network
Visited Mobile
services Switching
Center.
Visitor Location
Record (VLR)
Visited MSC: responsible for setting up calls
to/from mobile nodes in cells associated with
MSC. VLR: temporary database entry in
visited system, containing subscription
information for each visiting mobile user
Foreign agent
Mobile Station
Roaming Number
(MSRN), or “roaming
number”
Routable address for telephone call segment
between home MSC and visited MSC, visible
to neither the mobile nor the correspondent.
Care-ofaddress
58
Wireless, mobility: impact on higher layer protocols
logically, impact should be minimal …
best effort service model remains unchanged
TCP and UDP can (and do) run over wireless, mobile
… but performance-wise:
packet loss/delay due to bit-errors (discarded
packets, delays for link-layer retransmissions), and
handoff
TCP interprets loss as congestion, will decrease
congestion window un-necessarily
delay impairments for real-time traffic
limited bandwidth of wireless links
59
Chapter 6 Summary
Wireless
wireless links:
capacity, distance
channel impairments
CDMA
IEEE 802.11 (“wi-fi”)
CSMA/CA reflects
wireless channel
characteristics
cellular access
architecture
standards (e.g., GSM,
CDMA-2000, UMTS)
Mobility
principles: addressing,
routing to mobile users
home, visited networks
direct, indirect routing
care-of-addresses
case studies
mobile IP
mobility in GSM
impact on higher-layer
protocols
60