Greenplum数据库
Download
Report
Transcript Greenplum数据库
Greenplum 数据库基础培训
Wei.Li
Senior Data Architecture
Alpine Solution
2010/05
Greenplum数据库
海量并行处理 (Massively Parallel Processing) DBMS
基于 PostgreSQL 8.2
相同的客户端功能
增加支持并行处理的技术
增加支持数据仓库和BI的特性
• 外部表(external tables)/并行加载(parallel loading)
• 资源管理
• 查询优化器增强(query optimizer enhancements)
S1002 Network Configuration
as locally defined
192.168.
Local LAN/WAN
Catalyst 2960
X4200 (Master Host)
iLOM
e1000g3
e1000g2
e1000g5
e1000g4
e1000g1
e1000g0
X4500 (Segment Host 1,
Standby Master)
iLOM
e1000g3
e1000g2
e1000g5
e1000g4
e1000g1
e1000g0
X4500 (Segment Host 2)
iLOM
e1000g3
e1000g2
e1000g1
e1000g0
SMC 8748M
172.16.0
172.16.1
SMC 8748M
172.16.2
172.16.3
Greenplum 基本体系架构
LAN
Client
Master Host
Interconnect - Gigabit Ethernet Switch
Segment Host
Segment Host
Segment Host
Segment Host
客户端接口和程序
Client
psql
pgAdmin III
ODBC/Datadirect
JDBC
Perl DBI
Python
libpq
OLE DB
Master Host
访问系统的入口
数据库侦听进程 (postgres)
处理所有用户连接
建立查询计划
协调工作处理过程
管理工具
Master Host
系统目录表和元数据(数据字典)
不存放任何用户数据
Segment
每段(Segment)存放一部分用户数据
Segment Host
一个系统可以有多段
Segment Host
用户不能直接存取访问
所有对段的访问都经过Master
Segment Host
数据库监听进程(postgres)监听来自Master的
连接
Segment Host
Interconnect
LAN
Interconnect - Gigabit Ethernet Switch
Greenplum数据库之间的连接层
进程间协调和管理
基于千兆以太网架构
属于系统内部私网配置
支持两种协议:TCP or UDP
Greenplum 高可用性体系架构
standby master host
standby master
synch
process
master host
segment host
primary segment
master instance
mirror segment
segment host
primary segment
mirror segment
gigabit ethernet
client
(private LAN)
segment host
primary segment
mirror segment
Master/Standby 镜像保护
primary master host
standby master host
System Catalogs
System Catalogs
synchronization
process
Transaction Logs
Transaction Logs
Standby 节点用于当 Master 节点损坏时提供 Master 服务
Standby 实时与 Master 节点的 Catalog 和事务日志保持同步
数据冗余-Segment 镜像保护
master host
global
catalog
segment host 1
segment host 2
segment host n
Segment 1
(primary)
Segment 2
(primary)
Segment n
(primary)
Segment 2
(mirror)
Segment n
(mirror)
Segment 1
(mirror)
Greenplum Master
每个Segment的数据冗余存放在另一个Segment上,数据实时同步
当Primary Segment失败时,Mirror Segment将自动提供服务
Primary Segment恢复正常后,使用gprecoverseg –F 同步数据。
表分布的策略-并行计算的基础
表分布的策略-并行计算的基础
Hash分布
CREATE TABLE … DISTRIBUTED BY (column [,…])
同样数值的内容被分配到同一个Segment上
segments
S1
master
CC
C
input rows
B
A
B
C
C
A
A
C
hash
assign
S2 A
A
A
S3
BB
循环分布
CREATE TABLE … DISTRIBUTED RANDOMLY
具有同样数值的行内容并不一定在同一个Segment上
master
segments
S1 CC
A
input rows
B
A
B
C
C
A
A
C
assign
next
S2
C
B
S3
B
A
A
查询命令的执行
分布存储
customer
master
segment 1
sale
global
catalog
sale
part 1
cn integer
vn integer customer
pn integer part 1
dt date
qty integer product
part 1
prc float
vendor
part 1
cn integer
cname text
segment 2
segment 3
sale
part
vendor 2
sale
part 3
customer
vn integer
part 2
vname text
loc text
product
part 2
customer
part 3
vendor
product
part 2
product
part 3
vendor
part 3
pn integer
pname text
举例说明:按卡号、客户号、机构的分布方式优劣点
查询命令的执行查询命令的执行
Segments
Segments
Client
query plan
Segments
Master
Segments
SQL查询处理机制
master
QD process
slice 3
gang
gang
QE process
slice 2
QE process
slice 2
gang
QE process
slice 1
QE process
slice 1
segment1
segment2
并行查询计划
SELECT customer, amount FROM sales JOIN customer USING (cust_id) WHERE date=04302008;
SEGMENT 2
SEGMENT 1
SLICE 3
SLICE 3
Gather
Motion
Gather
Motion
Hash Join
Hash Join
Hash
Redistribute
Motion
Table Scan
Table Scan
SLICE 2
SLICE 1
Redistribute
Motion
Hash
Table Scan
Table Scan
SLICE 1
SLICE 2
表分区的概念
将一张大表逻辑性地分成多个部分,如按照分区条件进行查询,将减
少数据的扫描范围,提高系统性能。
提高对于特定类型数据的查询速度和性能
也可以更方便数据库的维护和更新
两种类型:
Range分区 (日期范围或数字范围)/如日期、价格等
List 分区,例如地区、产品等
Greenplum中的表分区在使用中具有总表的继承性,并通过Check参数
指定相应的子表
分区的子表依然根据分布策略分布在各segment上
分区是一种非常有用的优化措施,例如一年的交易按交易日期分区后,
查询一天的交易性能将提高365倍!!!
Data Distribution & Partitioning
表分区可减少数据的搜索范围,
提高查询性能
每个分区表的数据平均分布到各个节点
Segment 1A
Segment 1B
Segment 1C
Segment 1D
Segment 2A
Segment 2B
Segment 2C
Segment 2D
Segment 3A
Segment 3B
Segment 3C
Segment 3D
Jan 2005
Feb 2005
Mar 2005
Apr 2005
May 2005
Jun 2005
Jul 2005
Aug 2005
Sep 2005
Oct 2005
Nov 2005
Dec 2005
Full Table Scan VS. Partition Pruning
SELECT COUNT(*)
FROM orders
WHERE order_date>= ‘Oct 20 2005’
AND order_date< ‘Oct 27 2005’
Segment 1A
Segment 1B
Segment 1C
Segment 1D
Segment 1A
Segment 1B
Segment 1C
Segment 1D
Segment 2A
Segment 2B
Segment 2C
Segment 2D
Segment 2A
Segment 2B
Segment 2C
Segment 2D
Segment 3A
Segment 3B
Segment 3C
Segment 3D
VS
Segment 3A
Segment 3B
Segment 3C
Hash Distribution
Segment 3D
Hash Distribution+ Table Partitioning
表分区示意图
压缩存储
压缩存储
支持ZLIB和QUICKLZ方式的压缩,压缩比可到10:1
压缩表只能是Append Only方式
压缩数据不一定会带来性能的下降,压缩表将消耗CPU资源,而
减少I/O资源占用
语法
CREATE TABLE foo (a int, b text)
WITH (appendonly=true, compresstype=zlib,
compresslevel=5);
行列存储
Greenplum支持行或列存储模式
列模式目前只支持Append Only
如果常用的查询只取表中少量字段,则列模式效率更高,如查询需要取表中的大量
字段,行模式效率更高
语法:
CREATE TABLE sales2 (LIKE sales) WITH (appendonly=true,
orientation=column);
效率比较测试:
– 测试1:需要去表中所有字段,此时行存储更快。
select * from dw_ods.s1_sema_scmcaccp_row where crdacct_nbr= '4033930000166380411';
41秒
select * from dw_ods.s1_sema_scmcaccp_col where crdacct_nbr= '4033930000166380411';
116秒
– 测试2:只取表中少量字段,列存储更快
select crdacct_status from dw_ods.s1_sema_scmcaccp_row where crdacct_nbr=
'4033930000166380411';
35秒
select crdacct_status from dw_ods.s1_sema_scmcaccp_col where crdacct_nbr=
'4033930000166380411';
3秒
外部表加载
外部表的特征
Read-only
数据存放在数据库外
可执行SELECT, JOIN, SORT等命令,类似正规表的操作
外部表的优点
并行方式加载
ETL的灵活性
格式错误行的容错处理
支持多种数据源
两种方式
External Tables: 基于文件
Web Tables: 基于URL或指令
基于外部表的高速数据加载
利用并行数据流引擎,Greenplum可以直接用SQL操作外部表
数据加载完全并行
ETL服务器
Segment主机
—
内
部
互
联
网
Segment主机
Master主机
千
兆
以
太
网
交
换
机
Segment主机
Segment主机
内
部
网
络
gpfdist
外部表文件
gpfdist
外部表文件
外部表加载的特征
并行数据加载提供最好的性能
能够处理远程存储的文件
采用HTTP协议
200 MB/s data distribution rate per gpfdist
gpfdist文件分发守护进程启动:
gpfdist -d /var/load_files/expenses -p 8080 -l /home/gpadmin/log &
外部表定义:
CREATE EXTERNAL TABLE ext_expenses
( name text, date date, amount float4, description text )
LOCATION ('gpfdist//etlhost:8081/*','gpfdist//etlhost:8082/*')
FORMAT 'TEXT' (DELIMITER '|')
ENCODING ’UTF-8’
LOG ERRORS INTO ext_expenses_loaderrors
SEGMENT REJECT LIMIT 10000 ROWS ;
外部表加载异常处理
Load good rows and catch poorly formatted rows, such as:
– rows with missing or extra attributes
– rows with attributes of the wrong data type
– rows with invalid client encoding sequences
Does not apply to constraint errors:
– PRIMARY KEY, NOT NULL, CHECK or UNIQUE constraints
Optional error handling clause for external tables:
[LOG ERRORS INTO error_table] SEGMENT REJECT LIMIT count [ROWS | PERCENT]
( PERCENT based on gp_reject_percent_threshold parameter )
Example
CREATE EXTERNAL TABLE ext_customer
(id int, name text, sponsor text)
LOCATION ( 'gpfdist://filehost:8081/*.txt' )
FORMAT 'TEXT' ( DELIMITER '|' NULL ' ')
LOG ERRORS INTO err_customer SEGMENT REJECT LIMIT 5 ROWS;
外部表静态统计优化
Data resides outside the database
No database statistics for external table data
Not meant for frequent or ad-hoc access
Can manually set rough statistics in pg_class:
– UPDATE pg_class
SET reltuples=400000, relpages=400
WHERE relname='myexttable';
COPY SQL 命令
PostgreSQL command
Support loading and unloading
Optimized for loading a large number of rows
Loads all rows in one command (not parallel)
Loads data from a file or from standard input
Supports error handling as does external tables
EXAMPLE
COPY mytable FROM '/data/myfile.csv' WITH CSV HEADER; (文件生成在Master)
\COPY mytable FROM ‘/data/myfile.csv’ WITH CSV HEADER;(文件生成在本地)
COPY country FROM '/data/gpdb/country_data'
WITH DELIMITER '|' LOG ERRORS INTO err_country
SEGMENT REJECT LIMIT 10 ROWS;
数据加载性能优化提示
Drop indexes and recreate after load
Increase maintenance_work_mem parameter to speed up
CREATE INDEX operations
Run ANALYZE after load
Run VACUUM after load errors、delete、upate。。。
Do not use ODBC INSERT to load large volumes of data
资源负载管理(Workload Management)
限制查询队列的激活数
防止系统过载(CPU, disk I/O, memory)
Waiting Statements
?
ROLES
?
?
?
Active Statements
?
RESOURCE QUEUE
?
?
?
资源队列的两种典型管理方式
Resource Queue Limits
ACTIVE THRESHOLD
EXAMPLE: CREATE RESOURCE QUEUE adhoc ACTIVE
THRESHOLD 10 IGNORE THRESHOLD 1000.0;
COST THRESHOLD
EXAMPLES: CREATE RESOURCE QUEUE batch1 COST
THRESHOLD 1000000.0 NOOVERCOMMIT;
CREATE RESOURCE QUEUE batch1 COST THRESHOLD
1e+6;
Greenplum 性能监控器
Greenplum Performance Monitor
Highly interactive web-
based performance
monitoring
Real-time and historic
views of:
– Resource utilization
– Queries and query
internals
Dashboard
Greenplum Performance Monitor
System Metrics
Greenplum Performance Monitor
Query Monitor
备份与恢复
Backups and Restores
Parallel backups (gp_dump)
Parallel restores (gp_restore)
Automating dump/restores (gpcrondump, gpdbrestore)
Non-parallel backups and restores(pg_dump/pg_restore/psql)
并行备份和恢复(gp_dump/gp_restore)
备份
恢复
用于在同构环境间迁移数据结构、数据、function
串行备份和恢复(pg_dump/pg_restore)
用于在异构环境间迁移数据结构、数据、function
Running a Parallel Backup (gp_dump)
Each active segment is dumped in parallel
Dump files created in segment data directory by default
Supports compression (gzip)
Ensure sufficient disk space for dump files
A backup set is identified by a timestamp key
Example:
– Back up a database:
gp_dump gpdb
– Back up a database, and create dump files in a centralized location on all hosts:
gp_dump --gp-d=/home/gpadmin/backups gpdb
– Back up a particular schema only:
gp_dump -n myschema mydatabase
– Back up a single segment instance only (by noting the dbid of the segment
instance):
gp_dump --gp-s=i[5] gpdb
Dump Files Created by gp_dump
On the master host
gp_catalog_1_<dbid>_<timestamp>
gp_cdatabase_1_<dbid>_<timestamp>
gp_dump_1_<dbid>_<timestamp>
gp_dump_status_1_<dbid>_<timestamp>
On the segment hosts
gp_dump_0_<dbid>_<timestamp>
gp_dump_status_0_<dbid>_<timestamp>
Running a Parallel Restore (gp_restore)
Use gp_restore command
Need timestamp key from gp_dump
Make sure dump files are placed on correct segment hosts
Make sure database exists before restoring
Database-level server configuration settings are not restored
Examples
– Restore an Greenplum database using backup files created by
gp_dump:
gp_restore --gp-k=2005103112453 -d gpdb
– Restore a single segment instance only (by noting the dbid of the
segment instance):
gp_restore --gp-k=2005103112453 -d gpdb --gp-s=i[5]
Non-Parallel Backups and Restores
Green plum also supports pg_dump and pg_restore
Useful for migrating data to/from other DBMS
pg_dump creates a single dump file
Can be slow on very large databases
Run at low-usage times
Supports compression
Can dump data as INSERT or COPY commands
gp-syntax option includes DISTRIBUTED BY statements in DDL
Non-Parallel Backups and Restores Example
Dump a database called mydb into a SQL-script file:
pg_dump mydb > db.sql
To reload such a script into a (freshly created) database named newdb:
psql -d newdb -f db.sql
Dump a Greenplum database in tar file format and include distribution
policy information:
pg_dump -Ft --gp-syntax mydb > db.tar
To dump a database into a custom-format archive file:
pg_dump -Fc mydb > db.dump
To reload an archive file into a (freshly created) database named newdb:
pg_restore -d newdb db.dump
To dump a single table named mytab:
pg_dump -t mytab mydb > db.sql
To specify an upper-case or mixed-case name in -t and related switches,
you need to double-quote the name; else it will be folded to lower case. But
double quotes are special to the shell, so in turn they must be quoted. Thus,
to dump a single table with a mixed-case name, you need something like:
pg_dump -t '"MixedCaseName"' mydb > mytab.sql
客户端工具
pgAdmin3
图形化管理和SQL执行/分析/监控工具
psql
行命令操作和管理工具
pgAdmin3 for GPDB
pgAdmin3 is the leading graphical Open Source management,
development and administration tool for PostgreSQL
Greenplum has contributed extensive GPDB-specific enhancements
With GPDB 3.3, Greenplum ships and supports this tool
pgAdmin3 for GPDB
pgAdmin3 for GPDB
监控活动session ,同SQL:select * from pg_stat_activity;
监控锁,从pg_lock中获取信息
可以停止正在运行的SQL
PSQL
Connect through the master
Connection information
database name (-d | PGDATABASE)
master host name (-h | PGHOST)
master port (-p | PGPORT)
user name (-U | PGUSER)
First time connections
template1 database
default superuser account (gpadmin)
Issuing SQL Statements
Interactive mode
psql mydatabase
mydatabase=# SELECT * FROM foo;
Non-interactive mode (single command)
psql mydatabase –ac “SELECT * FROM foo;”
Non-interactive mode (multiple commands)
psql mydatabase –af /home/lab1/sql/createdb.sql
(Use semi-colon (;) to denote end of a statement)
Common PSQL Meta Commands
\? (help on psql meta-commands)
\h (help on SQL command syntax)
\dt (show tables)
\dtS (show system tables)
\dg or \du (show roles)
\l (show databases)
\c db_name (connect to this database)
\q (quit psql)
\! (Enter into shell mode)
\df (show function)
\dn(show schema)
Set search_path=…
\timing
Local, Global, and Master-Only
postgresql.conf
Local
Local
Local
Local
参数参考Adminguide
重要参数:max_connection,share_buff,work_mem…
Local 变量的修改,如max_stack_depth需要修改所有segment上的value
postgresql.conf file
Located in master or segment instance’s data directory
Used to set configuration parameters on the system level
Parameters that are using the default setting are
commented out (#)
Requires a restart (or reload using gpstop -u) for changes
to take effect
Viewing Parameter Settings
View a specific parameter setting
Example: SHOW search_path;
View all parameter settings
Example: SHOW ALL;
Set parameter
Example: set search_path=public
set client_encoding=gb18030
Configuring Host-Based Authentication
客户端授权
是否允许从某个客户端的连接
用户是否可以连接到所请求的数据库
pg_hba.conf file
基于host address, database, and/or DB user account控制权限
位于master和segment实例的数据目录中
系统初始化时进行default配置
Default Master Host pg_hba.conf
Local connections allowed for Greenplum superuser
Remote connections not allowed
EXAMPLE
# TYPE DATABASE USER CIDR-ADDRESS
local all gpadmin
ident sameuser
local all all
ident sameuser
host
all gpadmin 127.0.0.0/0 trust
METHOD
配置 pg_hba.conf
EXAMPLE
# TYPE
local
host
host
host
host
host
DATABASE
USER
all
all
all
all
all
all
all
all
carddw
etl
gpadmin
all
CIDR-ADDRESS
METHOD
trust
127.0.0.1/32
trust
::1/128
trust
10.0.0.206/32
trust
21.104.138.12/32 md5
21.104.138.0/24
md5
gpstop -u 可与在不重启数据库方式下,让设置生效
SQL语法
具体参考《Gp sql language》:
注意事项:
DELETE ,UPDATE在两表关联时,两个表的distribution必须一致。
如:delete from tablea using tableb where tablea.id=tableb.id
UPDATE table a as a
SET desc= b.desc
FROM tableb as b
WHERE a.id=b.id
以上操作 table a,table b 必须使用相同的分布,必要时可以使用
alter table set distribution 进行分布修改。
数据类型
常用数据类型
CHAR,VARCHAR,TEXT
Smallint ,integer,bigint
Numeric, real,double precision
Timestamp,date,time
Boolean
Array 类型。如 integer[]
其它数据类型请参考
System Catalog Tables and Views
All system catalogs in pg_catalog schema
Standard PostgreSQL system catalogs (pg_*)
Greenplum-specific catalogs:
gp_configuration
gp_distribution_policy
gp_id
gp_version_at_initdb
pg_resqueue
pg_exttable
pg_tables
pg_class
pg_stat_activity
To list all system catalog tables in psql: \dtS
To list all system views in psql: \dvS
其它 catalog 参考
函数
日期函数
Extract(day|month|year。。。 From date);
Select date + ‘1 day’::interval,date+ ‘1 month’::interval
SELECT date_part('day', TIMESTAMP '2001-02-16 20:38:40'); Result: 16
SELECT date_trunc('hour', TIMESTAMP '2001-02-16 20:38:40'); Result: 2001-02-16
20:00:00
pg_sleep(seconds);
系统日期变量
Current_date
Current_time
Current_timestamp
Now()
Timeofday() 在 事务中发生变化,以上函数在事务中不变
函数
字符串处理函数
Substr/length/lower/upper/trim/replace/position
rPad/lpad
To_char,
|| (字符串连接)
substring(string from pattern
~/ ~* ,like,simillar to (模式匹配)
其它杂类
Case 。。。When/Coalesce
nullif
generate_series
In/not in/exists/any/all
各类函数参考:
存储过程
Greenplum支持SQL/PYTHON/PERL/C语言构建函数,以下着重介绍
SQL 存储过程。
一个存储过程就是一个事务,包括对子过程的调用都在一个事务内
存储过程结构:
CREATE FUNCTION somefunc() RETURNS integer AS $$
DECLARE
quantity integer := 30;
BEGIN
RETURN ....;
END;
$$ LANGUAGE plpgsql;
存储过程请参考:
赋值
给一个变量或行/记录赋值用下面方法:identifier := expression
例子:user_id := 20;
执行一个没有结果的查询: PERFORM query;
一个例子:
PERFORM create_mv('cs_session_page_requests_mv', my_query);
存储过程
动态SQL
EXECUTE command-string [INTO [STRICT] target];
SELECT INTO
Example:SELECT ID INTO VAR_ID FROM TABLEA
获取结果状态
GET DIAGNOSTICS variable = item [, ...];
一个例子:
·GET DIAGNOSTICS integer_var = ROW_COUNT;
SQL返回变量
SQLERRM, SQLSTATE
控制结构
IF ... THEN ... ELSEIF ... THEN ... ELSE
LOOP, EXIT, CONTINUE, WHILE, FOR
从函数返回
有两个命令可以用来从函数中返回数据:RETURN 和 RETURN NEXT 。
Syntax:RETURN expression;
设置回调
EXEC SQL WHENEVER condition action;
condition 可以是下列之一:
SQLERROR,SQLWARNING,NOT FOUND
存储过程
异常处理
EXCEPTION WHEN unique_violation
THEN
-- do nothing
END;
忽略错误:
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'an EXCEPTION is about to be raised';
RAISE EXCEPTION 'NUM:%, DETAILS:%', SQLSTATE, SQLERRM;
END;
错误和消息
RAISE level 'format' [, expression [, ...]];
Level:
Info:信息输入
Notice:信息提示
Exception:产生一个例外,将退出存储过程
Example: RAISE NOTICE 'Calling cs_create_job(%)', v_job_id;
性能调优
Performance Tuning
Introduction to performance tuning
Common performance problems
Tracking down a performance problem
Query profiling (EXPLAIN, EXPLAIN ANALYZE)
Query tuning
我的经验:
Approaching a Performance Tuning Initiative
Set performance expectations
acceptable response times, queries per minute, etc.
Benchmarks
Know your baseline hardware performance
throughput / capacity
Know your workload
heavy usage times
resource contention
data contention
Focus your optimizations
Common Causes of Performance Issues
Hardware Issues / Failed Segments
Resource Allocation
Contention Between Concurrent Workloads
Inaccurate Database Statistics
Uneven Data Distribution
SQL Formulation
Database Design
Hardware Issues
Disk failures
Host failures
Network failures
OS not tuned for Greenplum
Disk Capacity
70% maximum recommended
VACUUM after updates, deletes and loads
VACUUM configuration parameters
max_fsm_relations = tables + indexes + system tables
max_fsm_pages = 16 * max_fsm_relations
Resource Allocation and Contention
Greenplum resource queues
limit active queries in the system
limit the size of a query a particular user can run
Perform admin tasks at low usage times
Data loading, ETL
VACUUM, ANALYZE
Backups
Design applications to prevent lock conflicts
Concurrent sessions not updating the same data at the same
time
Resource-related Configuration Parameters
work_mem = 32MB
maintenance_work_mem = 64MB
shared_buffers = 125MB
Database Statistics (ANALYZE)
Database statistics used by the query planner
Run ANALYZE after
Data loads
Restores from backups
Changes to schema (adding indexes, etc.)
Inserts, Updates, or Deletes
Can configure statistics collection
default_statistics_target = 25
gp_analyze_relative_error = .25
on specific table columns
• ALTER TABLE name ALTER column SET STATISTICS #
Greenplum Data Distribution
Table Distribution Key Considerations
Even data distribution
Local vs. distributed operations
Even query processing
Checking for data skew
gpskew –t schema.table
Unix system utilities (gpssh):gpssh –f seg_host ->sar 1 100
Rebalancing a Table
CREATE TABLE sales_temp (LIKE sales) DISTRIBUTED BY
(date, total, customer);
INSERT INTO sales_temp SELECT * FROM sales;
DROP sales;
ALTER TABLE sales_temp RENAME TO sales;
Database Design
Data Type Selection
smallest size possible to fit data
• INTEGER, not NUMERIC(11,2) for integer fields
same data type across tables for join columns
• consider hash of wide join keys, using BYTEA instead of CHAR(100)
varchar or text for character data
Denormalization (star schema)
Table Partitioning
Database Design - Indexes
Use sparingly in Greenplum Database
Try workload without indexes first
Can improve performance of OLTP type workloads
Other index considerations:
Avoid on frequently updated columns
Avoid overlapping indexes
Use bitmap indexes where applicable instead of B-tree
Drop indexes for loads
Consider a clustered index
Configuring Index Usage:
enable_indexscan = on | off
SQL Formulation
General Considerations
Know your data
Minimize returned rows
Avoid unnecessary columns/tables in result set
Avoid large sorts if possible
Match data types in joins
Greenplum-specific Considerations
Join on common distribution key columns when possible
Consider data distribution policy and query predicates
Tracking Down a Performance Problem
System Catalog Tables and Views
pg_stat_activity
pg_locks / pg_class
Database Logs
Located in master (and segment) data directories
UNIX system utilities (gpssh)
Query Profiling
Examine query plans to identify tuning opportunities
What to look for?
Plan operations that are taking exceptionally long
Are the planner’s estimates close to reality? (EXPLAIN ANALYZE)
Is the planner applying selective predicates early?
Is the planner choosing the best join order?
Is the planner selectively scanning partitioned tables?
Is the planner choosing hash aggregate and hash join operations
where applicable?
Is there sufficient work memory?
The Query Process
MASTER
PARSE
REWRITE
SEGMENTS
PLAN
DISPATCH
EXECUTE
Viewing the Query Plan
To see the plan for a query
EXPLAIN <query>
EXPLAIN ANALYZE <query>
Query plans are read from bottom to top
Motions (Gather, Redistribute, Broadcast)
• Joins, sorts, aggregations
• Table scans
The following metrics are given for each operation
cost (units of disk page fetches)
rows (rows output by this node)
width (bytes of the rows produced by this node)
Reading EXPLAIN Output
EXPLAIN SELECT * FROM names WHERE name = 'Joelle';
--------------------------- QUERY PLAN ------------------------Gather Motion 2:1 (slice1) (cost=0.00..20.88 rows=1 width=13)
-> Seq Scan on 'names' (cost=0.00..20.88 rows=1 width=13)
Filter: name::text ~~ 'Joelle'::text
Reading EXPLAIN ANALYZE Output
EXPLAIN ANALYZE SELECT * FROM names WHERE name = 'Joelle';
---------------------- QUERY PLAN -----------------------Gather Motion 2:1 (slice1) (cost=0.00..20.88 rows=1 width=13)
recv: Total 1 rows with 0.305 ms to first row, 0.537 ms to end.
-> Seq Scan on 'names' (cost=0.00..20.88 rows=1 width=13)
Total 1 rows (seg0) with 0.255 ms to first row, 0.486 ms to end.
Filter: name::text ~~ 'Joelle'::text
22.548 ms elapsed
Transaction Concurrency Control
MVCC (multi-version concurrency control)
Greenplum supports all transaction isolation levels defined in the SQL
standard
INSERT/COPY acquire locks at the row-level
UPDATE/DELETE acquire locks at the table-level
Can use LOCK command to acquire specific locks
Table-level Lock Modes
ACCESS SHARE (SELECT, ANALYZE)
ROW SHARE (SELECT FOR UPDATE, SELECT FOR SHARE)
ROW EXCLUSIVE (INSERT, COPY)
SHARE UPDATE EXCLUSIVE (VACUUM)
SHARE (CREATE INDEX)
SHARE ROW EXCLUSIVE
EXCLUSIVE (UPDATE/DELETE)
ACCESS EXCLUSIVE (ALTER TABLE, DROP TABLE, REINDEX,
CLUSTER, and VACUUM FULL)
Checking for Lock Conflicts
Lock conflicts caused by:
Concurrent transactions accessing the same object
Resource queue locks
Transaction deadlocks between segments (rare)
Query pg_locks system table to see current locks
EXAMPLE:
SELECT locktype, database, c.relname, l.relation, l.transactionid,
l.transaction, l.pid, l.mode, l.granted, a.current_query
FROM pg_locks l, pg_class c, pg_stat_activity a
WHERE l.relation=c.oid AND l.pid=a.procpid
ORDER BY c.relname;
About Transactions in Greenplum Database
Transactions bundle multiple statements into one ‘all-or-nothing’
operation
Transaction commands
BEGIN or START TRANSACTION
END or COMMIT
ROLLBACK
SAVEPOINT and ROLLBACK TO SAVEPOINT
Autocommit mode in psql
\set autocommit on|off
Two-phase commit transactions not supported
PREPARE TRANSACTION
COMMIT PREPARED
ROLLBACK PREPARED
Database Internals
Physical storage
Server processes
Statistics Collector
Collects information about database activity
Server configuration parameters
start_stats_collector = on
stats_block_level = off
stats_row_level = off
stats_queue_level = off
stats_command_string = on
To see statistics views and tables in catalog:
\dtvS pg_stat*
Physical Storage - Data Directory File Structure
Data Directory
Segment Name
base
template1
template0
Directory
postgres
File
User database
Table 1
Table 2
global
Table N
pg_clog
pg_dtm
pg_multixact
pg_subtrans
pg_tblspc
pg_twophase
pg_xlog
Server Processes
Linux: ps ax | grep postgres
Solaris: ps –ef | grep postgres
pargs <process_id>
Greenplum Master Instance
postgres database listener process
postgres: <sub_process_name>
postgres: seqserver process
postgres: <user> <database> <con#> <host> <cmd#><slice#>
Greenplum Segment Instance
postgres database listener process
postgres: <sub_process_name>
附
录
OLAP Windowing Extensions
About Window Functions
Constructing a Window Specification
OVER clause
WINDOW clause
Built-in Window Functions
About Window Functions
New class of function allowed only in the SELECT list
Returns a value per row (unlike aggregate functions)
Results interpreted in terms of the current row and its
corresponding window partition or frame
Characterized by the use of the OVER clause
Defines the window partitions (groups of rows) to apply the
function
Defines ordering of data within a window
Defines the positional or logical framing of a row in respect to
its window
Defining Window Specifications (OVER Clause)
All window functions have an OVER() clause
Specifies the ‘window’ of data to which the function
applies
Defines:
Window partitions (PARTITION BY clause)
Ordering within a window partition (ORDER BY clause)
Framing within a window partition (ROWS/RANGE clauses)
OVER (PARTITION BY…) Example
SELECT * ,
row_number()
OVER()
FROM sale
ORDER BY cn;
SELECT * ,
row_number()
OVER(PARTITION BY cn)
FROM sale
ORDER BY cn;
row_number | cn | vn | pn | dt
| qty | prc
------------+----+----+-----+------------+------+-----1
| 1 | 10 | 200 | 1401-03-01 | 1
| 0
2
| 1 | 30 | 300 | 1401-05-02 | 1
| 0
3
| 1 | 50 | 400 | 1401-06-01 | 1
| 0
4
| 1 | 30 | 500 | 1401-06-01 | 12
| 5
5
| 1 | 20 | 100 | 1401-05-01 | 1
| 0
6
| 2 | 50 | 400 | 1401-06-01 | 1
| 0
7
| 2 | 40 | 100 | 1401-01-01 | 1100 | 2400
8
| 3 | 40 | 200 | 1401-04-01 | 1
| 0
(8 rows)
row_number | cn | vn | pn | dt
| qty | prc
------------+----+----+-----+------------+------+-----1
| 1 | 10 | 200 | 1401-03-01 | 1
| 0
2
| 1 | 30 | 300 | 1401-05-02 | 1
| 0
3
| 1 | 50 | 400 | 1401-06-01 | 1
| 0
4
| 1 | 30 | 500 | 1401-06-01 | 12
| 5
5
| 1 | 20 | 100 | 1401-05-01 | 1
| 0
1
| 2 | 50 | 400 | 1401-06-01 | 1
| 0
2
| 2 | 40 | 100 | 1401-01-01 | 1100 | 2400
1
| 3 | 40 | 200 | 1401-04-01 | 1
| 0
(8 rows)
OVER (ORDER BY…) Example
SELECT vn, sum(prc*qty)
FROM sale
GROUP BY vn
ORDER BY 2 DESC;
SELECT vn, sum(prc*qty), rank()
OVER (ORDER BY sum(prc*qty) DESC)
FROM sale
GROUP BY vn
ORDER BY 2 DESC;
vn | sum
----+--------40 | 2640002
30 | 180
50 | 0
20 | 0
10 | 0
(5 rows)
vn | sum | rank
----+---------+-----40 | 2640002 | 1
30 | 180
|2
50 | 0
|3
20 | 0
|3
10 | 0
|3
(5 rows)
OVER (…ROWS…) Example
Window Framing: “Box car” Average
SELECT
vn, dt,
AVG(prc*qty) OVER (
PARTITION BY vn
ORDER BY dt
ROWS BETWEEN
2 PRECEDING AND
2 FOLLOWING)
FROM sale;
vn | dt
| avg
----+------------+--------10 | 03012008
| 30
20 | 05012008
| 20
30 | 05022008
| 0
30 | 06012008
| 60
30 | 06012008
| 60
30 | 06012008
| 60
40 | 06012008
| 140
40 | 06042008
| 90
40 | 06052008
| 120
40 | 06052008
| 100
50 | 06012008
| 30
50 | 06012008
| 10
(12 rows)
Global Window Specifications (WINDOW clause)
Useful for multiple window function queries
Define and name a window specification
Reuse window specification throughout the query
EXAMPLE:
SELECT
RANK() OVER (ORDER BY pn),
SUM(prc*qty) OVER (ORDER BY pn),
AVG(prc*qty) OVER (ORDER BY pn)
FROM sale;
SELECT
RANK() OVER (w1),
SUM(prc*qty) OVER (w1),
AVG(prc*qty) OVER (w1)
FROM sale
WINDOW w1 AS (ORDER BY pn);
Built-In Window Functions
cume_dist()
dense_rank()
first_value(expr)
lag(expr [,offset] [,default])
last_value(expr)
lead(expr [,offset] [,default])
ntile(expr)
percent_rank()
rank()
row_number()
* Any aggregate function (used with the OVER clause) can
also be used as a window function
Q&A
问题与解答