1 - Princeton CS
Download
Report
Transcript 1 - Princeton CS
COS 444
Internet Auctions:
Theory and Practice
Spring 2010
Ken Steiglitz
[email protected]
week 1
1
Mechanics
• COS 444 home page
• Classes:
- assigned reading: come ready to discuss
- theory (ppt + chalk)
- practice/discussion/news
- experiments
• Grading:
- problem sets, programming assignments
- class participation
- term paper
week 1
2
Background
•
•
•
•
•
week 1
Freshman calculus, integration by parts
Basic probability, order statistics
Statistics, significance tests
Game theory, Nash equilibrium
Java or UNIX tools or equivalent
3
Why study auctions?
• Auctions are trade; trade makes
civilization possible
• Auctions are for selling things with
uncertain value
• Auctions are a microcosm of economics
• Auctions are algorithms run on the
internet
• Auctions are a social entertainment
week 1
4
Goals
• The central theory,
classic papers
• A bigger picture
• Even bigger picture
• Experimental and empirical technique
week 1
5
Cassady on the romance of auctions (1967)
Who could forget, for example, riding up the Bosporus
toward the Black Sea in a fishing vessel to inspect a fishing
laboratory; visiting a Chinese cooperative and being the
guest of honor at tea in the New Territories of the British
crown colony of Hong Kong; watching the frenzied but
quasi-organized bidding of would-be buyers in an
Australian wool auction; observing the "upside-down"
auctioning of fish in Tel Aviv and Haifa; watching the
purchasing activities of several hundred screaming female
fishmongers at the Lisbon auction market; viewing the
fascinating "string selling" in the auctioning of furs in
Leningrad; eating fish from the Seas of Galilee while seated
on the shore of that historic body of water; …
week 1
6
Cassady on the romance of auctions
(1967)
... observing "whispered“ bidding in such far-flung places
as Singapore and Venice; watching a "handshake" auction
in a Pakistanian go-down in the midst of a herd of dozing
camels; being present at the auctioning of an early Van
Gogh in Amsterdam; observing the sale of flowers by
electronic clock in Aalsmeer, Holland; listening to the chant
of the auctioneer in a North Carolina tobacco auction;
watching the landing of fish at 4 A.M. in the market on the
north beach of Manila Bay by the use of amphibious
landing boats; observing the bidding of Turkish merchants
competing for fish in a market located on the Golden Horn;
and answering questions about auctioning posed by a
group of eager Japanese students at the University of
Tokyo.
week 1
7
Auctions: Methods of Study
•
•
•
•
•
•
week 1
Theory (1961--)
Empirical observation (recent on internet)
Field experiments (recent on internet)
Laboratory experiments (1980--)
Simulation (not much)
fMRI (?)
8
History
week 1
9
History
week 1
10
History
week 1
11
History
week 1
12
History
week 1
13
History
week 1
14
History
Route 6:
Long John
Nebel
pitching
hard
week 1
15
Google Ad Auctions – Hal Varian
week 1
16
Standard theoretical setup
•
•
•
•
One item, one seller
n bidders
Each knows her value vi (private value)
Each wants to maximize her
surplusi = vi – paymenti
• Values usually randomly assigned
• Values may be interdependent
week 1
17
English auctions: variations
• Outcry ( jump bidding allowed )
• Ascending price
• Japanese button
Truthful bidding is dominant
in Japanese button auctions
Is it dominant in outcry?
Ascending price?
week 1
18
Vickrey Auction: sealed-bid
second-price
William Vickrey, 1961
week 1
Vickrey wins Nobel Prize, 1996
19
Truthful bidding is dominant in
Vickrey auctions
Japanese button and Vickrey
auctions are (weakly)
strategically equivalent
week 1
20
Dutch descending-price
week 1
Aalsmeer flower market, Aalsmeer,
Holland, 1960’s
21
week 1
22
Sealed-Bid First-Price
• Highest bid wins
• Winner pays her bid
How to bid? That is, how to choose bidding
function
b (v )
Notice: bidding truthfully is now pointless!
week 1
23
Dutch and First-Price auctions
are (strongly) strategically
equivalent
So we have two pairs,
comprising the four most
common auction forms
SP ENGLISH
FP DUTCH
week 1
24
Enter John Nash
• Equilibrium translates
question of human
behavior to math
• How much to shade?
Nash wins Nobel Prize, 1994
week 1
25
Equilibrium
• A strategy (bidding function) is a
(symmetric) equilibrium if it is a best
response to itself.
• That is, if all others adopt the strategy,
you can do no better than to adopt it
also.
Note: Cannot call this “optimal”
week 1
26
Simple example: first-price
• n=2 bidders
• v1 and v2 uniformly distributed on [0,1]
• Find b (v1 ) for bidder 1 that is best response
to b (v2 ) for bidder 2 in the sense that
E [surplus ] = max
Note: We need some probability theory for
“uniformly distributed” and “E[ ]”
week 1
27
Verifying a guess
• Assume for now that v/ 2 is an equilibrium strategy
• Bidder 2 bids v2 / 2 ; Fix v1 . What is bidder 1’s best
response b (v1 ) ?
E[surplus] =
2b
0
(v1 b)dv2 2b(v1 b)
… the average is over the values of v2 when 1 wins
Bidders 1’s best choice of bid is b = v1 / 2 … QED.
week 1
28
and Hurwicz + Myerson + Maskin
win Nobel prize in 2007 for
theory of mechanism design
week 1
29
New directions: Simulation
Agent-Based Simulation of Dynamic Online
Auctions,“ H. Mizuta and K. Steiglitz, Winter .
Simulation Conference, Orlando, FL, Dec. 1013, 2000
week 1
30
New directions: Sociology
M. Shohat and J. Musch “Online auctions as
a research tool: A field experiment on ethnic
discrimination” Swiss Journal of Psychology
62 (2), 2003, 139-145
week 1
31
New directions: Category clustering
Courtesy of Matt Sanders ’09
• Categories connected by mutual bidders
• Darker lines mean higher probability that
two categories will share bidders
• Categories with higher totals near center
• Color random
• Only top 25% lines by weight are shown
• Based on 278,593 recorded auctions
from bid histories of 18,000 users
week 1
32