Spreading dynamics in small world networks
Download
Report
Transcript Spreading dynamics in small world networks
Spreading dynamics on
small-world networks with a
power law degree distribution
Alexei Vazquez
The Simons Center for Systems Biology
Institute for Advanced Study
Epidemic outbreak
External source
Population
Population structure
Contact graph
N individuals
pk connectivity distribution
D average distance
Sexual contacts
Sexually transmitted diseases Sweden
1 year
-1
QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
pk~k- , 2<<5
•Liljeros et al. Nature (2001)
•Jones & Handcook, Nature (2003)
•Schneeberger et al, Sex Transm Dis (2004)
lifetime
-1
Sexual contacts
STD
Colorado Springs HIV network
Potterat et al, Sex. Transm Infect 2002
k -2
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
N=250
D8
city
Physical contact or proximity
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
nation/world
Eubank et al, Nature 2004
1 day
Portland
k- 1.8
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
USA
Barrat et al, PNAS 2004
N=3,880
D4.37
Physical contact or proximity
QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
Branching process model
Spanning tree
Generation
0
root
1
2
3
4
kpk/<k>
k-1
k
pk
Branching process model
Timming
d
d+1
generation
Generation time
T
Distribution
G()=Pr(T)
t
t+T1
t+T2
t+T3
time
Branching process model
1. The process start with a node (d=0) that
generates k sons with probability distribution pk.
2. Each son at generation 0<d<D generates k-1 new
sons with probability kpk/<k>.
3. Nodes at generation D does not generate any
son.
4. The generation times are independent random
variables with distribution function G().
Note: Galton-Watson, Newman
Bellman-Harris, Crum-Mode-Jagers
Recursive calculation
t=0
d
t=0
d
T1
T2
d+1
Results
Constant transmission rate :
G()=1-e-
Incidence I(t):
expected rate of new infections at time t
e
I(t) ~
D1 t
N
(
t)
e
( R˜ 1)t
t t 0
t t 0
k(k 1)
˜
R
k
t0
D 1 1
R˜
Reproductive number
Time scale
Vazquez, Phys. Rev. Lett. 2006
pk~k -, kmax~N
ln N
t 0 ~ ln ln N
N (3 )
>3,
<3,
3
3
t<<t0 (t0 when N )
I(t) ~ e
( R˜ 1)t
t>>t0 (t00 when N )
I(t) ~ N( t) D1 e t
Vazquez, Phys. Rev. Lett. 2006
Numerical simulations
• Network: random graph with a given degree
distribution.
• pk~k -
• Constant transmission rate
• N=1000, 10000, 100000
• 100 graph realizations, 10000 outbreaks
Numerical simulations
log-log
linear-log
I(t)/N
I(t)/N
e(K-1)t
tD-1e-t
t
1,000
10,000
100,000
t
Cumulative number
Case study: AIDS epidemics
t2
t3
t3
t3
New York - HOM
New York - HET
San Francisco - HOM
South Africa
Kenya
t2
Georgia
Latvia
Lithuania
exponential
t (years)
Szendroi & Czanyi, Proc. R Soc. Lond. B 2004
Generalizations
Degree correlations
Multitype
Degree correlations
k
q( k | k)
k’
k pk
uncorrelated
k
k pk
correlated
k
0 disassortative
K k q( k | k)( k 1) ~ k 0 uncorrelated
0
k
assortative
Degree correlations
Kk
Kk
k
k
Degree correlations
k
q( k | k)
k’
k pk
uncorrelated
k
k pk
correlated
k
0 disassortative
K k q( k | k)( k 1) ~ k 0 uncorrelated
0
k
assortative
N( t)D-1e-t
e(R*-1)t
Vazquez, Phys. Rev. E 74, 056101 (2006)
Multi-type
i=1,…,M types
Ni
p(i)k
eij
D
number of type i agents
type i degree distribution
mixing matrix
average distance
Reproductive number matrix
R˜ ij
k i ki 1
ki
eij
: largest eigenvalue
Multi-type
Type 1
Type 2
Type 3
Type 4
Type-network
eij
eii
Strongly connected type-networks
e( 1)t
I(t) ~
D1 t
N (t) e
t t 0
t t 0
t0
D 1 1
Vazquez, Phys. Rev. E (In press); http://arxiv.org/q-bio.PE/0605001
Generalizations
Non-exponential
generating time distributions
Intermediate states
1
(
)
e
Ý
g( ) G( )
( )
e( R˜ 1)t
I(t) ~
D1 t
N(t) e
t t0
t t0
Vazquez, DIMACS Series in Discrete Mathematics… 70, 163 (2006)
Long time behavior: Email worms
Receive infected email
Sent infected emails
time
generating time (residual waiting time)
Generating time probability density
g(t)
1
dP( )
t
In collaboration with R. Balazs, L. Andras and A.-L. Barabasi
Email activity patterns
Left:
T
University server
3,188 users
129,135 emails sent
< >~1 day
E~25 days
T
Right:
exp
E
exp
E
Comercial email server
~1,7 millions users
~39 millions emails sent
< >~4 days
E~9 months
Incidence: model
1
t
exp Poisson model
g(t)
A(t)exp t
email data
E
E
t
FPoisson(t)exp Poisson model
I(t)
F (t)exp t
email data
email
E
Prevalence: http://www.virusbtn.com
I(t)
I(t)
I(t)
Prevalence data
Decay time ~ 1 year
Poisson model
< >~1 day - University
< >~4 days - Comercial
Email data
E~25 days - University
E~9 months - Comercial
Conclusions
• Truncated branching processes are a suitable
framework to model spreading processess on real
networks.
• There are two spreading regimes.
– Exponential growth.
– Polynomial growth followed by an exponential
decay.
• The time scale separating them is determined by D/R.
• The small-world property and the connectivity
fluctuations favor the polynomial regime.
• Intermediate states favor the exponential regime.