Approximations to Probability Distributions: Limit Theorems
Download
Report
Transcript Approximations to Probability Distributions: Limit Theorems
Approximations to Probability
Distributions: Limit Theorems
Sequences of Random Variables
• Interested in behavior of functions of random
variables such as means, variances, proportions
• For large samples, exact distributions can be
difficult/impossible to obtain
• Limit Theorems can be used to obtain properties
of estimators as the sample sizes tend to infinity
– Convergence in Probability – Limit of an estimator
– Convergence in Distribution – Limit of a CDF
– Central Limit Theorem – Large Sample Distribution of
the Sample Mean of a Random Sample
Convergence in Probability
• The sequence of random variables, X1,…,Xn, is said to
converge in probability to the constant c, if for every e>0,
lim P(| X n c | e ) 1
n
• Weak Law of Large Numbers (WLLN): Let X1,…,Xn be iid
random variables with E(Xi)=m and V(Xi)=s2 < . Then the
sample mean converges in probability to m:
lim P X n m e 0 or lim P X n m e 1
n
where X n
n
i 1
n
Xi
n
E X n mX m
Proof of WLLN
s
s
V X
s
n
n
2
n
X
1
k2
1
1
P (| X m X | ks X ) 1 2 P (| X m X | ks X ) 2
k
k
ks 1
P | X n m X | ks X
2
n k
Chebyshev' s Inequality : P ( m X ks X X m X ks X ) 1
ks
Let : e
n
k
ne
s
ks
k2
ne 2
s2
1
s2
2 2
k
ne
s2
1
P | X n m X | ks X
e 2 2
ne
n
k
s2
lim P | X n m X | e lim
0 e 0
n
n ne 2
Prob
Xn m
(k 1)
Other Case/Rules
• Binomial Sample Proportions
X ~ Binomial (n, p )
1 if Trial i is a Success
Xi
0 if Trial i is a Failure
E ( X i ) p V ( X i ) p (1 p )
n
X X i E ( X ) np, V ( X ) np(1 p )
i 1
X
Let p
n
^
n
i 1
n
Xi
^
^ p (1 p )
E p p, V p
n
^ Prob
p p
Prob
Prob
• Useful Generalizations: Suppose : X n m X and Yn mY Then :
Prob
1)
X n Yn m X mY
Prob
2)
X nYn m X mY
Prob
3)
X n / Yn m X / mY
Prob
4)
X n mX
(provided mY 0)
(provided P( X n 0) 1)
Convergence in Distribution
• Let Yn be a random variable with CDF Fn(y).
• Let Y be a random variable with CDF F(y).
• If the limit as n of Fn(y) equals F(y) for every point
y where F(y) is continuous, then we say that Yn
converges in distribution to Y
• F(y) is called the limiting distribution function of
Yn
• If Mn(t)=E(etYn) converges to M(t)=E(etY), then Yn
converges in distribution to Y
Example – Binomial Poisson
• Xn~Binomial(n,p)
Let l=np p=l/n
• Mn(t) = (pet + (1-p))n = (1+p(et-1))n = (1+l(et-1)/n)n
• Aside: limn (1+a/n)n = ea
• limn Mn(t) = limn (1+l(et-1)/n)n = exp(l(et-1))
• exp(l(et-1)) ≡ MGF of Poisson(l)
• Xn converges in distribution to Poisson(l=np)
Example – Scaled Poisson N(0,1)
X ~ Poisson (l )
E ( X ) l V ( X ),
X E( X ) X l
Y
aX b
V (X )
l
M aX b (t ) ebt M X (at )
M Y (t ) e t l e l ( e
t/
l
1)
i
x
Aside : e x e t /
i 0 i!
l
M X (t ) e
1
a
l
l ( e t 1)
, b l
exp t l l e t /
l
1
t / l t
1 1 1 t / l
2!
2
3
/ l3 / 2
3!
t2 / l
t 3 / l3 / 2
M Y (t ) exp t l l 1 1 t / l
2!
3!
t 2
t2
t 3 / l1/ 2
t 3 / l1/ 2
exp t l t l
exp
2!
3!
3!
2!
Now taking limit as l :
t 2
t 3 / l1/ 2
t2 /2
lim M Y (t ) lim exp
e
MGF ( N (0,1))
l
l
3!
2!
Poisson/Normal CDF Y=(X-L)/sqrt(L) L=25
1
0.9
0.8
0.7
F(y)
0.6
Poisson CDF
0.5
Z CDF
0.4
0.3
0.2
0.1
0
-6
-4
-2
0
2
y
4
6
8
Central Limit Theorem
• Let X1,X2,…,Xn be a sequence of independently and
identically distributed random variables with finite
mean m, and finite variance s2. Then:
n X m
s
Dist
N (0,1)
where X
n
i 1
Xi
n
• Thus the limiting distribution of the sample mean is a
normal distribution, regardless of the distribution of the
individual measurements
Proof of Central Limit Theorem (I)
• Additional Assumptions for this Proof:
• The moment-generating function of X, MX(t), exists in
a neighborhood of 0 (for all |t|<h, h>0).
• The third derivative of the MGF is bounded in a
neighborhood of 0 (M(3)(t) ≤ B< for all |t|<h, h>0).
• Elements of Proof
• Work with Yi=(Xi-m)/s
• Use Taylor’s Theorem (Lagrange Form)
• Calculus Result: limn[1+(an/n)]n = ea if limnan=a
Proof of CLT (II)
Define : Yi
Xi m
s
E (Yi ) 0 V (Yi ) 1
(independe nt)
t X is m tm / s
t
X i (t / s )
tm / s
M Yi (t ) E e
e
Ee
e
M Xi
s
1 n Xi m 1
Y
X m
n i 1 s
s
n X m
s
nY
M n X m (t ) M
s
1 n
i 1Yi
n
n
n
Y
1
n
Y
i 1 i
n
n
(t ) M n (t ) This is our " target"
i 1 i
Proof of CLT (III)
M n (t ) E e
(t / n )
Yi E e (t /
n )Y1
e (t /
n )Yn
n
t
t t
M Y1
M Yn
M Y
n
n n
Aside : Taylor' s Theorem (Lagrange form) :
( k 1)
f
(t x )
f ( k ) (a)
k
f ( x) f (a ) f ' (a )( x a )
( x a)
( x a ) k 1
k!
(k 1)!
f ( k ) (t x )
where : rk ( x)
( x a ) k 1
(k 1)!
with t x strictly between a and x
Proof of CLT (IV)
( k 1)
f
(t x )
f ( k ) (a )
f ( x) f (a ) f ' (a )( x a )
( x a) k
( x a ) k 1
k!
(k 1)!
t x min( a,x) , max( a,x)
Current Applicatio n :
f () M Y ()
t
x
n
a0
t
t x 0,
n
k 2
f (a ) M Y (0) E e 0Y E (1) 1
f ' (a ) M Y ' (0) E (Y ) 0
f ( 2 ) (a ) M Y( 2 ) (0) E Y 2 V (Y ) E (Y ) 1 0 1
f (3) (t x ) M Y( 3) (t x ) Bn B
2
(Previous assumption )
2
3
Bnt 3
t2
t
t
1 t
Bn t
MY
0
0
0 1
3/ 2
1 0
3! n
2n 6n
n
n
2! n
Proof of CLT (V)
n
t
t
Bnt
lim M n (t ) lim M Y
3/ 2
lim 1
n
n
n n 2n 6n
2
n
3
n
n
3
2
1t
Bnt
a
B
t
t
lim 1 1/ 2 lim 1 n
where an n1/ 2
n
n
n
2 6n
n 2 6n
t 2 Bnt 3
t 2 Bt 3 t 2
lim an lim 1/ 2 lim 1/ 2 a ( B )
n
n 2
6n n 2 6n 2
3
2
lim M n (t ) e e
a
n
n X m
s
t2 /2
MGF ( N (0,1))
Dist
N (0,1)