Kinetic Monte Carlo
Download
Report
Transcript Kinetic Monte Carlo
Kinetic Monte Carlo
Triangular lattice
Diffusion
D DJ
Thermodynamic
factor
Self Diffusion
Coefficient
N
k B T
ln x
N2 N
1
DJ
2dt
N
2
1
R i t
N
i1
2
Diffusion
R j t
R i t
1
DJ
2dt
N
1
R i t
N
i1
2
D*
1
2dt
1
N
N
i1
R i t
2
Standard Monte Carlo to study
diffusion
• Pick an atom at random
Standard Monte Carlo to study
diffusion
• Pick an atom at random
• Pick a hop direction
Standard Monte Carlo to study
diffusion
• Pick an atom at random
• Pick a hop direction
• Calculate exp E b k B T
Standard Monte Carlo to study
diffusion
•
•
•
•
Pick an atom at random
Pick a hop direction
Calculate exp E b k B T
If ( exp E b k B T >
random number) do the hop
Kinetic Monte Carlo
Consider all hops simultaneously
A. B. Bortz, M. H. Kalos, J. L. Lebowitz, J. Comput Phys, 17, 10 (1975).
F. M. Bulnes, V. D. Pereyra, J. L. Riccardo, Phys. Rev. E, 58, 86 (1998).
For each potential hop i,
calculate the hop rate
E
i
Wi * exp
k B T
For each potential hop i,
calculate the hop rate
E
i
Wi * exp
k B T
Then randomly choose a hop k, with probability
Wk
For each potential hop i,
calculate the hop rate
E
i
Wi * exp
k B T
Then randomly choose a hop k, with probability
1 = random number
Wk
For each potential hop i,
calculate the hop rate
E
i
Wi * exp
k B T
Then randomly choose a hop k, with probability
1 = random number
k1
i
i1
Nhops
k
W W W
1
i
i 0
Wk
W
W
i 0
i
Then randomly choose a hop k, with probability
1
k1
= random number
Nhops
k
W W W
i
i1
Wk
1
W
i
i 0
W
i 0
i
Time
After hop k we need to update the time
2
= random number
1
t log 2
W
Two independent stochastic
variables:
the hop k and the waiting time t
k1
k
i1
i 0
Wi 1 W
Wi
Nhops
W
1
t log 2
W
E
i
Wi * exp
k B T
W
i 0
i
Kinetic Monte Carlo
•
•
•
•
Hop every time
Consider all possible hops simultaneously
Pick hop according its relative probability
Update the time such that t on average
equals the time that we would have waited
in standard Monte Carlo
A. B. Bortz, M. H. Kalos, J. L. Lebowitz, J. Comput Phys, 17, 10 (1975).
F. M. Bulnes, V. D. Pereyra, J. L. Riccardo, Phys. Rev. E, 58, 86 (1998).
Triangular 2-d lattice, 2NN
pair interactions
E
N latticesites
l1
1
1
V
V
V
V
o
point l
i
j
2 NNpair l
2 NNNpair l
i
NNpairs
j
NNNpairs
Activation barrier
E kra
1
E activatedstate E1 E 2
2
E barrier E kra
1
E final E initial
2
Thermodynamics
D DJ
N
k B T
ln x
N2 N
2
Kinetics
D DJ
DJ
1
2dt
N
2
1
R i t
N
i1