Transcript estimation
Introduction to Signal Estimation
Outline
94/10/14
2
Scenario
For physical considerations, we know that the voltage is
between –V and V volts. The measurement is corrupted by
noise which may be modeled as an independent additive
zero-mean Gaussian random variable n. The observed
variable is r . Thus,
r an
The probability density governing the observation process is
given as
2
r a 2 2
pa (r )
94/10/14
1
e
2 n
n
3
Estimation model
H0
Probabilistic Mapping
to observation space
Observation
space
Estimation
Rule
Decision
Decision rule
H1
Parameter
Space
Parameter Space: the output of the source is a
Probabilistic Mapping from parameter space to observation
space :the probability law that governs the effect of parameters on
the observation space.
Observation space: a finite-dimensional space
Estimation rule: A mapping of observation space into an estimate
94/10/14
4
Parameter Estimation Problem
In the composite hypothesis-testing problem,a family of
distributions on the observation space, indexed by a
parameter or set of parameters, a binary decision is wanted
to make about the parameter。
In the estimation problem, values of parameters want to be
determined as accurately as possible from the observation
enbodied。
Estimation design philosophies are different due to
o the amount of prior information known about the parameter
o the performance criteria applied。 .
94/10/14
5
Basic approaches to the parameter estimation
Bayesian estimation:
o assuming that parameters under estimation are to be a random
quantity related statistically to the observation。
Nonrandom parameter estimation:
o the parameters under estimation are assumed to be unknown but
without being endowed with any probabilistic structure。
94/10/14
6
Bayesian Parameter Estimation
Statement of problem:
o : the parameter space and the parameter
o Y :random variable observation space
o p ; :denoting a distribution on the observation space , and
mapping from to
ˆ :
Finding a function ˆ : s.t ˆ is the best guess of the true
value of based on the observation Y=y。
94/10/14
Obser.
R.V.
y
estimate
ˆ y
ˆ y
7
Bayesian Parameter Estimation
Performance evaluation:
o the solution of this problem depends on the criterion of goodness by
which we measure estimation performance --the Cost function
assignment。
C : R C ˆ Y is
the cost of estimating a true value
as ˆ for in and ˆ in
o The conditional risk/cost averaged over Y for each
R E C Y C y p y dy
o The Bayes risk: if we adopt the interpretation that the actual
parameter value is the realization of a random variable , the
Bayes risk/average risk is defined as
r E R R w d
94/10/14
8
Bayesian Parameter Estimation
o where w is the prior for random variable 。the appropriate design
goal is to find an estimator minimizing r ˆ ,and the estimator is
known as a Bayes estimate of
o Actually,the conditional risk can be rewritten as
R E C Y E C Y
o the Bayes risk can be formulated as
r E R E E C Y E C Y
o the Bayes risk can also be written as
r E R E C Y E E C Y Y E C Y Y y p y dy
94/10/14
9
Bayesian Parameter Estimation
o the Bayes risk can also be written as
r E R E C Y E E C Y Y E C Y Y y p y dy
• The equation suggests that for each y , the Bayes estimate of can
be found by minimizing the posterior cost given Y=y
E C ˆ y Y y
o Assuming that has a conditional density w y given Y=y for
each y , then the posterior cost ,given Y=y, is given by
E C y Y y C y w y d
o Deriving w y
• If we know p y ,priori
and w
w / y
p y w
p y w
p y
p y w d
o the performance of Bayesian estimation depends on a cost function
94/10/14
C y
w y
10
(MMSE) Minimum-Mean-Squared-Error Estimation
2
R and E C , for , R 2
o Measuring the performance of an estimator in terms of the squared
of the estimation error ˆ
2
ˆ
o The corresponding Bayes risk is E
2
• defined as the mean-squared-error(MMSE) estimator。
o The Bayes estimation is the Minimum-mean-squared-error(MMSE)
estimator。
o the posterior cost given Y=y under this condition is given by
2
2
E y Y y E y 2 y 2 Y y
2
E y Y y 2E y Y y E 2 Y y
2
y 2 y E Y y E 2 Y y
94/10/14
11
(MMSE) Minimum-Mean-Squared-Error Estimation
o the cost function is a quadratic form of y ,and is a convex function。
o Therefore, it achieves its unique minimum at the point where its
derivative y with respective to is zero。
10 H 10 D
D10
2
E ˆ y Y y
2 ˆ y 2E Y y 0
ˆ y
ˆMMSE y E Y y w y d
o the conditional mean of given Y=y 。 The estimator is also
sometimes termed the conditional mean estimator-CME。
94/10/14
12
(MMSE) Minimum-Mean-Squared-Error Estimation
Another derivation:
2
2
E y Y y y w y d
2
E ˆ y Y y
2 ˆ y w y d 0
ˆ y
ˆ y w y d w y d
ˆ y w y d E Y y
94/10/14
13
(MMAE) : Minimum-Mean-Absolute-Error Estimation
Measuring the performance of an estimator in terms of the
absolute value of the estimation error, ˆ
R and E C , for
ˆ, R
2
The corresponding Bayes risk is E ˆ ,which is defined as
the mean-absolute-error (MMAE)。
The Bayes estimation is the Minimum-mean-absoluteerror(MMAE) estimator。
94/10/14
14
(MMAE) : Minimum-Mean-Absolute-Error Estimation
From the definition
E y Y y P ˆ y x Y y dx
0
P ˆ y x Y y dx
P ˆ y x Y y dx
0
0
By change variable t x ˆ y and t x ˆ y for the first and
the second integration, respectively,
E ˆ y Y y ˆ P t Y y dt
94/10/14
y
ˆ y
P t Y y dt
15
(MMAE) : Minimum-Mean-Absolute-Error Estimation
Actually,the expression represents that it is a differentiable
function of ˆ y , thus, it can be shown that
E ˆ y Y y
ˆ y
P y Y y P ˆ y Y y
o The derivative is a non-decreasing function of ˆ y
o If ˆ y approaches - ,its value approaches -1
o If ˆ y approaches ,its value approaches 1
o E ˆ y Y y achieves its minimum over ˆ y at the point where its
derivative changes sign
P t Y y P t Y y t ˆABS y
and
P t Y y P t Y y t ˆABS y
94/10/14
16
(MMAE) : Minimum-Mean-Absolute-Error Estimation
the cost function can be also expressed as
ˆ y
E y Y y ˆ w y d
ˆ w y d
y
E ˆ y Y y
ˆ y
ˆ w y d
w y d 0
y
ˆ
y
ˆ y
w y d ˆ
y
1
w y d
2
o the minimum-mean-absolute-error estimator is to estimate the
median of the conditional density function of ,Y=y。
o the MMAE is also termed as condition median estimator
o For a given density function of , if its mean and median are the
same, then,MMSE and MMAE coincide each other,i.e. they have the
same performance based on different criterion adopted。
94/10/14
17
MAP Maximum A posterior Probability Estimation
Assuming the uniform cost function
0 if ˆ
C ˆ,
0
1 if ˆ
1
0
ˆ y ˆ y
ˆ y
The average posterior cost, given Y=y, to estimate ˆ y is
given by
E C y , Y y P y Y y
1 P ˆ y Y y
94/10/14
18
MAP Maximum A posterior Probability Estimation
Consideration I:
o Assuming is a discrete random variable taking values in a finite set
0
M 1and with i j for i j the average posterior
cost is given as
E C y , Y y 1 P ˆ Y y
1 w ˆ y
which suggests that to minimize the average posterior cost,
The Bayes estimate in this case is given for each y by any value
of which can maximizes the posterior probability w y over ,
i.e. the Bayes estimate is the value of that has the maximum a
posterior probability of occurring given Y=y
94/10/14
19
MAP Maximum A posterior Probability Estimation
Consideration II:
o is a continuous random variable with conditional density function
given Y=y。Thus, the posterior cost become
w y
ˆ y
E C ˆ y , Y y 1 ˆ
w y d
y
ˆy y
w
• which suggests that the average posterior cost is minimized over ˆ y by
maximizing the area under over the interval y y 。
• Actually, the area can be approximately maximized by choosing ˆ y to
be a point of maximum of w y 。
• the value of can be chosen as small as possible and smooth w y ,
then we can obtain
ˆ y
ˆ y
w y d 2w y ˆ y
• where ˆ y is chosen to the value of maximizing w y over 。
94/10/14
20
MAP Maximum A posterior Probability Estimation
The MAP estimator can be formulated as
1 E C ˆ y , Y y
ˆMAP arg max w / y
w y
ˆ y ˆ y ˆ y
o The uniform cost criterion leads to the procedure for estimating
as that value maximizing the a posteriori density w y , which is
known as the maximum a posteriori probability (MAP) estimate and
is denoted by ˆMAP。
o It approximates the Bayes estimate for uniform cost with small
94/10/14
21
MAP Maximum A posterior Probability Estimation
The MAP estimates are often easier to compute than MMSE、
MMAE,or other estimates。
A density achieves its maximum value is termed a mode of
the corresponding probability。Therefore, the MMSE、
MMAE、and MAP estimates are the mean、median、and
mode of the corresponding distribution, respectively。
94/10/14
22
Remarks -Modeling the estimation problem
Given conditions:
o Conditional probability density function of Y given p ,
o Prior distribution for w
o Conditional probability density of given Y=y
w / y
p y w
p y w d
p y w
py
o The MMSE estimator ˆMMSE
ˆMMSE y E Y y w y d
o
The MMAE estimator MMAE / ˆABS
ˆ y
94/10/14
w y d ˆ
y
w y d
1
2
23
Remarks -Modeling the estimation problem
The MAP estimator ˆMAP
ˆMAP arg max w / y
o For MAP estimator, it is not necessary to calculate p y because the
unconditional probability density of y does not affect the
maximization over 。
o ˆMAPcan be found by maximizing p y w over
.
o For the logarithm is an increasing function, therefore, ˆMAP also
maximizes log p y logw
over 。
o If is a continuous random variable given Y=y, then for sufficient
smooth p y and w ,a necessary condition for MAP is given by
MAP equation
log
p
y
log w
MAP y
MAP y
94/10/14
24
Example
Probability density of observation given
e y if y 0
p y
0 if y 0
The prior probability density of
e if 0
w
0
0 if 0
the posterior probability density of given Y=y
e y
2
y
y
e
w / y e y d
0
0
if 0
where p y 0 e
94/10/14
y
d y
if and y 0
2
25
Example
The MMSE
0
0
ˆMMSE y w / y d y e
y
2
0
2e
y
2
y
d
d
2 y
o the Bayes risk is the average of the posterior cost
MMSE r ˆMMSE
E E E y Y
E E ˆMMSE Y Y
2
2
E Var Y
• the minimum MSE is the average of the conditional variance of
94/10/14
26
Example
• the conditional variance given Y=y is shown as
Var y E 2 Y y E 2 Y y
Var y 2w y d ˆMMSE y
0
y
2
0
2 y
•
2
3w y d 4 y
2
2
MMSE
MMSE E Var Y Var y p y dy
0
2
2
2 y y dy
0
2 3 2
94/10/14
27
Example
MMAE
o From the definition the MMAE estimate is the median of w y
o Because is a continuous random variable given Y=y, the MMAE
estimate can be obtained
1
ˆABS y w y d 2
2
ˆABS y
y e
y
d
1
2
o By changing the variable x y
94/10/14
y ˆABS y
xe xdx
1
2
xe x e x
y ˆABS y
1
2
1
y ˆABS y
ˆ
y ABS y 1 e
2
28
Example
o the solution is
ˆABS y
T
y
• where T is the solution for 1 T eT 1 2 ¸ and T~1.68.
The MAP
max w y =max y e y
max e
e
y
y
2
y e
y
ˆMAP
0
1
y
o
94/10/14
29
Example
multiple observation
n
p y
e
y k
e
n
n
yk
k 1
k 1
w y
w p y
n 1
y
e
p y
n!
n
ˆMMSE w y d
0
ˆMAP
94/10/14
n 1
n
y
k
k 1
n
y k
k 1
1
0
1
n
n
yk
n k 1 n
1
n
yk
n
k 1 n
30
Nonrandom parameter(real) estimation
A problem in which we have a parameter indexing the class
of observation statistics, that is not modeled as a random
variable but nevertheless is unknown.
Don’t have enough prior information about the parameter to
assign a prior probability distribution to it.
Treat the estimation of such parameters in an organized
manner.
94/10/14
31
Statement of problem
Given the observation Y=y, what is the best estimate of
is real and no information about the true value of
the only averaging of cost that we can be done is with
respect to the distribution of Y given ,the conditional risk
R E ˆ y
2
o we can not generally expect to minimize the conditional risk uniformly
o For any particular value of , 0 the conditional mean-squared error
can be made zero by choosing ˆ y to be identically 0 for all
observations
o However, it can be poor if the value of 0 is not near the true value of
94/10/14
32
Statement of problem
E ˆ y
E ˆ y E 2E ˆ y
E ˆ y 0
2
2
0
2
2
0
0
o Unless 0 E ˆ y 0 2 E ˆ y 2
o it is not a good estimator due to not with minimum conditional meansquared-error。
the conditional mean
E ˆ y ˆ y p y dy
o if E ˆ y we say that the estimate is unbiased
o in general we have biased estimate b E ˆ y
o variance of estimator var E ˆ y E ˆ y 2
o
94/10/14
b 0
33
MVUE
var E ˆ y b
2
b 2E b ˆ y
E ˆ y b 2b E ˆ y
E ˆ y b
E ˆ y
2
2
2
bp 0
2
2
2
for the unbias estimator b 0 ,and the variance is the
conditional mean-squared error under p
var E
94/10/14
ˆ y
2
The best we can hope for is minimum variance unbiased
estimator-MVUE
34
Q&A
94/10/14
35