Economics 310
Download
Report
Transcript Economics 310
Economics 310
Lecture 22
Limited Dependent Variables
Examples of limited dependent
variables
Decision
not.
Decision
Decision
Decision
not.
Decision
or not.
to go to graduate school or
to get married or not.
to have a child or not.
to vote for a proposition or
to send child to private school
Modeling Decision
This yes or no type decision leads to a
dummy variable.
The dependent variable of our model is
a dummy variable.
We will be modeling the probability
function, P(Y=1).
The statistical Model
T heobservablechoice variableis a discret erandom
variable. Choicedepends on bot h observableand
unobservable characterist ics of theindividual and
thealternatives available to theindividual.
T heprobability distribut ion of Bernoullirandom variableis
g(yi ) Pi yi (1 Pi )1 yi yi 0,1
g (1) P ( y i 1) Pi
g (0) P ( y i 0) 1 Pi
E ( yi ) Pi
Var ( yi ) Pi (1 Pi )
For our case, we will makePi a funct ionof individual
characterist ics and charactistics of thechoice.
Simplest Model
Linear Probability Model
For our basic regression model
y i E [ y i ] ei
E [ y i ] Pi 1 2 X i 2 k X ik
Model suffers from het eroscedast icit y.
var(ei ) Pi (1 Pi )
which variesfrom observat ion t o observat ion
and is a funct ionof t heexplanat ory variables.
Picture of LPM
yˆ
1
0
X
X0
X1
Problems of LPM
Predictions outside 0-1 range.
Heteroscedasticity
This can be solved and a estimated GLS
estimator developed.
Coefficient Determination has little
meaning.
Constant marginal effect.
Probit Statistical Model
The probit model is a nonlinear (in the
probability) statistical model that achieves the
objective of relating the choice probability Pi
to explanatory factors in such a way that the
probability remains in the (0,1] interval.
Model can be developed from several
theories.
Threshold theory
Utility theory
Probit Model
Assume we havean index (ut ilit yindex) of t heform:
I t 1 2 X i 2 k X ik
Let ( 1
2 k )' and x i' (1 X i 2 X ik )
Then I t x i
'
Assume peoplehavea random t hreshold, such t hatan eventoccursif t heindex of
of personaland eventcharact erist ics is great er t han t het hreshold. Weassume t he
t hresholdpossess a st andardnormaldist ribut ion.
It
P (yi 1) P ( zi I t ) F (I t ) (2 ) 1/ 2 e
z2
2
dz
Interpreting the Probit Model
1
F(I)
0
0
I
Interpreting the Probit Model
Pi
xij
F ( x i )
'
xij
xi
'
F ' ( xi )
xij
f ( xi ) j
'
Maxim umchangeoccurs when I i x i 0
Estimating Probit Parameters
We have g(yi ) Pi yi (1 Pi )1 yi yi 0,1
For n independent observations, we have
g( y1
n
n
i 1
i 1
y 2 y n ) g(yi ) Pi yi (1 Pi )1 yi
n
F ( x i ) yi [1 F ( x i )]1 yi
'
'
i 1
We call this thelikelihoodfunctionand can writeit as
n
l ( ) F ( x i ) yi [1 F ( x i )]1 yi
'
'
i 1
we maximizeit by solving thefollowingk equations
l ( )
ln[l ( )]
0 j 1, , k or
0
j
j
Estimating Probit Model using
LIMDEP
read; nobs=13081; nvar=5;names=1;file=wlottq07205.asc
$CREATE; COMPUTER=HESCU1A=1
$CREATE; AGE=PRTAGE
$CREATE; AGESQ=AGE*AGE
$CREATE; NONWHITE=PERACE>1
$CREATE; FEMALE=PESEX=2 $CREATE; EARNING=PTERNWA
$PROBIT; LHS=COMPUTER; RHS=ONE,AGE,AGESQ,NONWHITE,FEMALE,EARNING
$STOP $
Results of probit estimation
Computer ownership model
Variable
Coefficient Standard Error b/St.Er. P¢¦Z¦>z|
Mean of X
--------------------------------------------------------------------Index function for probability
Constant
-.1504969
.91575E-01
-1.643
.10029
AGE
.8665748E-03
.49262E-02
.176
.86036
38.79
AGESQ
-.1163434E-03
.59141E-04
-1.967
.04916
1669.
NONWHITE
-.4021405
.31576E-01 -12.736
.00000
.1499
FEMALE
.1392186
.23382E-01
5.954
.00000
.4955
EARNING
.7477787E-03
.31510E-04
23.732
.00000
573.2