presentation - Queaso Systems nv

Download Report

Transcript presentation - Queaso Systems nv

Functional Programming
Putting the fun in programming
At least I think so
[email protected]
Me, Myself & Functional Programming
•
•
•
•
•
•
1991: Prolog
1992: sociology in LLN
1993: Haskell
1994: paper of Hudak
1999: paper Games provide fun(ctional programming
tasks) in Functional and declarative programming in
education, FDPE’99
• 2001: finished my PhD and started at KHLim Diepenbeek
• Teaching ICT in master in industrial sciences (ing.)
o Capable in Java, not so much in .NET
o Bit of functional programming in master
2/72
Hudak’s Paper
• Experiment in 1994
3/72
A Military Radar System Prototyped
4/72
The Results
5/72
Subjective Evaluation
6/72
Research in Functional Programming
•
•
•
•
•
Dia van Tom’s inaugurale
Lisp: 1958
Haskell:
Erlang
Common Lisp: 1e ANSI gestandaardiseerde taal met OO +
FP
7/72
8
Key Challenges
Agoria: ’9300 unfilled ICT positions'
More
Software
Society
Bug-Free
Software
ANP: ‘Software bugs cost
1.6 billion € a year’
Computer Science
Productivity
Programming
Languages
Reliability
9
Meeting the Challenges
Incremental Research
Mainstream languages
Mainstream languages
Fundamental Research
A different approach
to languages
10
Historical Evolution
alternative
declarative
languages
mathematics
mainstream
hardware
imperative
languages
Fortran Algol
1953 1958
object
orientation
Cobol C
SmalltalkC++ Eiffel
1959 1969 1971 1983 1985
11
Declarative Languages
Functional
Programming
Haskell
Constraint
Programming
MiniZinc
Logic
Programming
Prolog
12
Recent Developments
mathematics
hardware
research
declarative
languages
mainstream
imperative
object
languages
orientation
14
Anonymous Functions
Functional Languages
1936
λ calculus
Alonzo
Church
1958
Lisp
John
McCarthy
1973
ML
Robin
Milner
1987
Haskell
Haskell
Committee
Mainstream
2007
C#
2014
Java 8
2011
C++11
Swift
Is there a doctor FP-programmer
in the audience?
15/72
16
Early Adopters
Haskell Language + GHC Compiler
Finance
Telecom
Many Others
Productivy and Functional Programmin
• http://simontylercousins.net/does-the-language-you-usemake-a-difference-revisited/
• The problem
17/72
Solution in C#
18/72
Solution in F#
19/72
The Numbers (1)
20/72
The Numbers (2)
21/72
The Numbers (3)
22/72
Rest of the presentation
• Some concepts of Functional Programming
o
With examples in Haskell, F# and C#
23/72
Declarative Programming
Describing the what instead of the how
What
• Derivation from ‘input’values to ‘output’-values
• Or expressing properties
o
How
• What machine to use
• When to use which
features of machine
• What steps to set
Often mathematically sound
• (but still fun to do ;-)
• Intelligent execution
o
• Programmer considered
intelligent
verifiable
o
24
Mostly not verifiable
Declarative Programming
Examples
What = Expressions
• SQL
• Linq (mostly)
• Logic Programming
o
How = Statements
• Imperative programming
• Manipulation of v ariables
• What machine to use
o
Constraint Programming
von Neumann architecture
• When to use which
• Functional Programming
features of machine
o
Different mindset!
Variables = registers
• What steps to set
o
25
o
Order of execution
Outer loops (for, while)
Logic Programming = Prolog (1a)
ancestor(x,y) :- parent(x,y).
ancestor(x,y) :- ancestor(x,z), parent(z,y).
femaleAncestor(x,y) :- ancestor(x,y), female(x).
?- femaleAncestor(Kris,Lars).
?- femaleAncestor(Celine,Lars).
?- femaleAncestor(x,Lars).
26/72
=> no
=> yes
=> Celine, Liesbet
Logic Programming = Prolog (1b)
female(Celine).
female(Liesbet).
female(Hanne).
male(Kris).
male(Lars).
parent(Celine,Kris).
parent(Kris,Lars).
parent(Liesbet,Lars).
27/72
Logic Programming = Prolog (2)
evenNumber([]).
even([_,_|T]):- evenNumber(T).
palindrome(L):- reverse(L,L).
reverse([],[]).
reverse([H|T],R):- reverse(T,T1),append(T1,[H],R).
28/72
(Pure) Functional Programming
• Much closer to “real” programming
o
o
Logic Programming = (partial) instantation = more magic
Functional Programming
• functions with parameters returning values
• Much like functions and/or methodes
• But
o
No side effects
• Referential transparency
•
An expression is a value with always the same value
• “no (hidden or far distant) state messing with things”
• Strongly typed with type inference
“Strongly typed programs can’t go wrong”
29/72
• Polymorf: a function can have many types
o
Lambda calculus
• Each expression has a never-changing-value
o
o
z = 18
y = sin(z)
• Complex expressions are calculated by evaluating
and substituting subexpressions
o
(z + sin(z))*(y+cos(y))
• Function calls behave exactly the same
o
o
o
Always call by value
Always return value
No pointer- or out variables
30/72
Lambda Calculus (2)
• f x = g(3+x)+x
• g y = y+1
• z=5
• fz+gz
31/72
How to express new state?
• Never
o
No mutable variables! (in pure FP-languages)
• in general no side effects
o
Confusing for imperative programmers
• F# allows for explicit declaration of mutable variables
• C# allows for explicit declaration of readonly (instance) variables
• But actually always
o
A new state is a new value
• May be stored explicitly in a variable
• Or may be stored temporarily in memory
32/72
Explicit new values!
let y = a + b
yPlus1 = y + 1
f x = (x+y)/yPlus1
in f a + f b
No confusion between x++ and ++x etc.
33/72
Advantages of having no mutable variables
• Referential transparancy
A reference always refers to the same value
o Mathematically sound
• Implicit parallellism
o Order of execution can be chosen, both at compile and
run time
o Synchronisation: locking issues when dependencies
• Formal reasoning
o Automated correctness and equivalence proofs
o More transparant code
o No underlying dependency from mutable states
o
34/72
35
Side Effects
Traditional Mainstream
Languages
Oops,
unexpected
interference
36
No Side Effects
Traditional Declarative
Languages
Traditional Mainstream
Languages
No Side-Effects,
No Problem
No Side-Effects,
No Party
✓ Mathematical Elegance
✓ Predictable
✓ No Interference
37
Explicit Side Effects
State-of-the-Art Declarative
Languages
Explicit Side-Effects,
No Problem
✓ Mathematical Elegance
✓ Predictable
✓ Explicit Interference
How to return many values?
• Imperative programs
Return 1 value from function
o And others as ‘out’ parameters (using call by reference)
• OO programs using only call by value
o Define a container class for each combination of types
o Cumbersome…
o
• FP-languages use tuples (x,y) , (x,y,z) , (a,b,c,d), …
o
o
Flexible in number of elements
Flexible in composing types
38/72
Recursion = “looping” (1)
From definition to code
n! = n*(n-1)!
With base case 1! = 1
• Non-recursive C#
• Haskell
o
o
public long fac(int n) {
long value = 1;
for (int i=2; i<=n; n++) {
value = value * i;
}
return value ;
}
fac 1 = 1
fac n = n * fac (n-1)
39
Recursion = “looping” (2)
From definition to code
n! = n*(n-1)!
With base case 1! = 1
• F#
• Recursive C#
let rec fact x =
if x < 1 then 1
else x * fact (x - 1)
public long fac(int n) {
if (n==1) return 1;
return n * fac (n-1);
}
40
Recursion = “looping” (3)
StackOverFlow error?
• “Real” functional languages use more optimisation techniques for
recursive programs
• F#
• Recursive C#
let rec fact x =
if x < 1 then 1
else x * fact (x - 1)
public BigInteger fac(int n) {
if (n==1) return 1;
return n * fac (n-1);
}
41
Tail recursion
Taking care of useless stack frames
• Haskell
• F#
fac n = fac’ n 1
let fac n = facT n 1
fac‘ 1 acc = acc
fac‘ n acc = fac’ (n-1) (n*acc)
let rec facT n acc =
if n = 1
then acc
else facT (n-1) (n*acc)
42
Tail recursion (2)
Taking care of useless stack frames
• C#
BigInteger Factorial(int n, BigInteger product)
{
if (n < 2)
return product;
return Factorial(n - 1, n * product);
}
43
Exercises in my master class ;-)
1. Hermite sum 1/n + 1/(n-1)+…1/2+1/1
2. Mysterious function (presumption of Fermat)
Reduce n to1 with the following steps
o
•
•
Odd n => continue with 3n+1
Even n => continue with n/2
3. Calculate numberOfDivisors and isPriem
44/72
Solutions in Haskell
herm 1 = 1
herm n = 1/n + (herm (n-1))
myst 1 = [1]
myst n | mod n 2 == 0
| otherwise
= n:(myst (div n 2))
= n:(myst (3*n+1))
numberOfDivisors …
isPrime n = (numberOfDivisors n) == 2
45/72
Recursive Programming: conclusion
• Not exclusively for functional programming
• But very typical for FP
o
And efficient
• Interesting pattern also for non FP-languages!
46/72
Lists in Functional Programming
• Omnipresent feature
In most languages
But very strong support in FP
o
o
• Especially when combined with pattern matching
• And recursive programming
• Remember basic concept of recursion:
Define primitive/base expression(s)
Reduce complex expression to more simple expression
1.
2.
•
•
N reduces to n-1, n/2, …
List reduces to list with fewer elements
47/72
Pattern matching in Haskell
fac 1 = 1
fac n = n * fac (n-1)
findValue [] y = False
findValue (x:xs) y = if x == y then True
else findValue xs y
evenElems [] = True
evenElems [x] = False
evenElems (x:y:ys) = evenElems ys
48/72
Pattern matching in F#
findValue [] y = False
findValue (x:xs) y = if x == y then True
else findValue xs y
let rec findValue list x = match list with
| [] -> False
| y::ys -> if x == y then True
else findValue x ys
49/72
Pattern Matching in C#
• Proposition for Roslyn in 8/2014
o
o
https://roslyn.codeplex.com/discussions/560339
http://www.infoq.com/news/2014/08/Pattern-Matching
if (expr is Type v)
{ // code using v }
// try-cast
var c = Cartesian(3, 4);
if (c is Polar(var R, *))
Console.WriteLine(R);
var a = new Location(1, 2, 3); //x=1, y=2, z=3
50/72
if (a is Location(1, var y, *))
Defining (recursive) types in Haskell
•
•
•
•
•
•
data Examenvorm = M | S | P
data Sexe= M | V
data Human = Mens Integer String Geslacht
data Point = Point Integer Integer
data GenericPoint a = Pt a a
data Tree a = Leaf a
| Branch (Tree a) (Tree a)
• Perfect for pattern matching!
51/72
Defining (recursive) types (2)
• Comparable to structs and even classes
• data Human = Human { age :: Integer,
name :: String,
sexe :: Sexe }
• Creates automatically the following functions
o
o
o
o
Human :: Integer -> String -> Sexe -> Human
age :: Human -> Integer
name :: Human -> String
sexe :: Human -> Sexe
52/72
Insert sort in Haskell
isort [ ] = [ ]
isort (x:xs) = insert x (isort xs)
insert x [ ] = [x]
insert x (y:ys) = if (x<y) then (x:y:ys)
else y:(insert x ys)
Barely new syntax needed!
53/72
Insert sort in F#
let rec insert x l = match l with
| [] -> [x]
| y::ys -> if x <= y then x::y::ys
else y::insert x ys
and insertsort l = match l with
| [] -> []
| x::xs -> insert x (insertsort xs)
Source: http://www.codecodex.com/wiki/Insertion_sort
54/72
Insert sort in C# (non-functional)
static void InsertSort(IComparable[] array)
{
int i, j;
for (i = 1; i < array.Length; i++)
{
IComparable value = array[i];
j = i - 1;
while ((j >= 0) && (array[j].CompareTo(value) > 0))
{
array[j + 1] = array[j];
j=j-1;
}
array[j + 1] = value;
}
}
55/72
Type Classes and type inference
• Note the explicit IComparable[] array in function type
o
static void InsertSort(IComparable[] array)
• In Haskell implicit and auto-detected
56/72
Polymorfic: look at the types
• Typ “:i isort” at command prompt of Haskell Interpreter
o
isort :: Ord a => [a] -> [a]
• Similar
o
o
o
halfList :: [a] -> [a]
findValue :: Eq a => [a] -> a -> Bool
fac :: (Num a, Eq a) => a -> a
57/72
Strongly typed programs can’t go wrong
• Type inference tries to find the most general type of
function
o Depending on the functions that are being used
• Programmer doesn’t need to define types
o
o
o
But a type mismatch results in a compile time error
Indicating a mistake in the reasoning
Whenever type inference succeeds most programs run
correctly
58/72
Type inference in .NET
• More and more available
59/72
List Comprehensions in Haskell
Very declarative constructor
-- give all even numbers of a list
evens list = [x | x <- list, even x]
inBoth list1 list2 = [x | x <- list1, findValue x list2]
combine list1 list2 = [(x,y) | x <- list1, y <- list2]
60/72
List Comprehensions in Haskell
Very declarative constructor
-- give all even numbers of a list
evens list = [x | x <- list, even x]
inBoth list1 list2 = [x | x <- list1, findValue x list2]
combine list1 list2 = [(x,y) | x <- list1, y <- list2]
61/72
List Comprehensions in F#
[for x in collection do ... yield expr]
seq { for x in 0..100 do
if x*x > 3 then yield 2*x } ;;
evens list = [x | x <- list, even x]
inBoth list1 list2 = [x | x <- list1, findValue x list2]
combine list1 list2 = [(x,y) | x <- list1, y <- list2]
62/72
List Comprehensions in C#
from x in Enumerable.Range(0, 100)
where x * x > 3
select x * 2
63/72
Quicksort: even more beautiful ;-)
• Concept of quicksort
1.
2.
Take “a” element of the list: the “spil”
Split the list in two
1. Elements smaller than spil
2. Elements bigger than spil
3.
4.
Quicksort each sublist (recursively ;-)
Join the sorted lists together
64/72
Quicksort in Haskell
qsort [] = []
qsort [x] = [x]
qsort (x:xs) =
let smaller = qsort([y | y <- xs, y < x])
larger = qsort([y | y <- xs, y > x])
in smaller ++ (x:larger)
65/72
Quicksort in F#
let rec qsort:int list -> int list = function
| [] -> []
| x::xs -> let smaller = [for a in xs do if a<=x then yield a]
let larger = [for b in xs do if b>x then yield b]
qsort smaller @ [x] @ qsort larger
let rec qsort = function
| [] -> []
| x::xs -> let smaller,larger = List.partition (fun y -> y<=x) xs
qsort smaller @ [x] @ qsort larger
66/72
Higher order functions
• Functions taking other functions as parameters
• Simple list functions map & filter
map fac [3,6,2,4]
o filter odd [1,2,3,4,5,6,7]
• More Complex list functies foldr & foldl
o Reduce a list to one value
o
• Using a combining function
• And a starting value
o
Foldr (+) 0 [1,2,3,4,5,6]
67/72
Recursion over functions
repeatFun 0 f value = value
repeatFun n f value = repeatFun (n-1) f (f value)
bubbleSort list = repeatFun(length list) bubble list
bubble [] = []
bubble [x] = [x]
bubble (x:y:ys)
| x < y = x:(bubble (y:ys))
| otherwise = y:(bubble (x:ys))
68/72
Anonymous functions
• Lambda abstractions
69/72
Currying
• Functions of n arguments
• Are actually functions of 1 argument
o
Returning a function of (n-1) argument
• Which is actually of function of 1 argument
•
Returning a function of (n-2) arguments
- …
• Specialisation of functions
contains2 = contains 2
70/72
Open your mind!
• Become a Better Developer with Functional
Programming
o http://www.oscon.com/oscon2011/public/schedule/detail/
19191
Questions?
71/72
More info about the TETRA-project?
• http://www.vlambda.be/
• Contact [email protected] or Tom Schrijvers
.NET-productiviteit verhogen
met een gepast gebruikt
van lambda's en F#
(en natuurlijk ook in Java ;-)
Vlaamse software vlamt met lambda’s
72/72