ATYPICAL OPTIC NEURITIS
Download
Report
Transcript ATYPICAL OPTIC NEURITIS
NEURO-OPHTHALMOLOGY
UPDATE 2012
Anthony C. Arnold, MD
Jules Stein Eye Institute
Los Angeles, California
CASE 1
27 year old woman
1 week history
visual loss OD
Pain with eye
movement
VA 20/300
APD +
Disc shown
Diagnosis?
OPTIC NEURITIS
Young (mean 29)
Female > male
Pain with eye movement (92%)
Central unilateral visual loss over days
Afferent pupillary defect
OPTIC NEURITIS: FUNDUS
NORMAL 67%
DISC EDEMA 33%
OPTIC NEURITIS:
FLUORESCEIN ANGIOGRAPHY
Normal filling, early
leakage
OPTIC NEURITIS VF
PATTERNS (ONTT)
Central scotoma 8%
Altitudinal visual field
loss 15%
Generalized
depression 48%
OPTIC NEURITIS
MRI:
Mild-mod enhancing optic
n parenchyma 95%
Kupersmith MJ, et al. Neuro-Ophthalmology 2001;25:34
OPTIC NEURITIS: NATURAL
HISTORY
Onset of visual loss days
Pain resolves over days-weeks
Visual recovery onset within 2-3 weeks,
complete at months
Visual outcome:
> 20/20 74% @10 years
Recurrence 36% overall @ 15 years
OPTIC NEURITIS
Risk of MS
15 year data:
Overall 50%
0 MR lesion: 25%
> 1 MR lesion: 72%
ON Study Group Arch Neurol
2008;65:727-32
OPTIC NEURITIS
WHAT TO DO?
All patients get MRI
Risk of MS
Corticosteroids for ON?
Improve visual outcome?
Reduce risk of MS?
MS therapy (immunomodulation agents)
in non-MS patients who are at risk?
OPTIC NEURITIS
OPTIC NEURITIS TREATMENT TRIAL
(ONTT)
Oral prednisone 1mg/kg/day not used
No visual benefit
Increased recurrence rate (X 2)
Higher oral dose may be acceptable1
1Kaufman
DI et al. Neurology 2000;54:2039-44
OPTIC NEURITIS
OPTIC NEURITIS TREATMENT TRIAL
(ONTT)
IV methylprednisolone 1 gm/day (single dose
outpatient) X 3 days (+ oral X 11 d)
Speeds recovery 1st 2-3 weeks
No long term visual benefit
Decreased progression to MS at 2 yrs (but
not thereafter) if minimum 2 MRI white
matter lesions
OPTIC NEURITIS
SO, a single dose of corticosteroids does
reduce MS risk long term
* Although we don’t know that repeated pulses might not
accomplish this
Is there anything we can do, especially in
those at high risk (> 1 lesion on MR)?
ON & IMA
CHAMPS (2000)
383 pts 1st acute clinical demyelinating event
(CIS), including 192 (50%) optic neuritis and
MR showed > 2 lesions
All received IV + oral steroids within 14 d
Randomized to weekly 30 µg IM interferon
beta-1a (Avonex) vs placebo within 27d
Planned for 3 year treatment/followup
Endpoint: clinically definite MS
Jacobs LD, et al: N Engl J Med 2000;343:898-904
ON & IMA
CHAMPS (2000)
Study terminated after 1st interim analysis
Cumulative probability for MS significantly
lower in treatment than control (35% vs 50%,
p = 0.002); reduction in rate by about half
MR lesion volume, new/enlarging lesions, and
enhancing lesions all significantly lower
Jacobs LD, et al: N Engl J Med 2000;343:898-904
ON & IMA
CHAMPIONS (2006)
Post hoc analysis immediate vs delayed
treatment in CHAMPS Trial
40% difference in conversion rate to
CDMS at 10 years early vs delayed
Delayed group double recurrence rate
Kinkel RP, CHAMPIONS Study Group.
Neurology 2006;66:678-84
ON & IMA
OTHER IMMUNOMODULATION
ETOMS (EU)
Rebif (interferon beta 1a SQ) weekly vs placebo
BENEFIT
Betaseron (interferon beta-1b) SQ QOD
PreCISe
Glatiramer SQ daily
ALL REDUCED RISK OF MS
ON & IMA
Most MS patients present with a CIS
High risk = 1 typical MRI lesion
70-90% of high-risk CIS will go on to
CDMS in 15 years
IMA’s lower that risk substantially
ON & IMA
SO, TREAT EVERYONE WITH CIS +
MR LESION?
ON & IMA
I AM NOT SURE THAT I AM RIGHT
IMA: DRAWBACKS
Expense ( > $10K/yr forever?)
Injections
Systemic side effects
Treatment of the 25% not progressing to MS?
Should we wait to see NEW MR lesions (repeat
scan) before instituting therapy?
OPTIC NEURITIS
SHOULD CORTICOSTEROIDS BE
USED IN EVERY CASE?
MS attacks produce axonal damage early1
ONTT: reduced risk of MS for 2 years
Reduction of permanent brain damage and long
term disability in MS2
1Trapp
BD et al. NEJM 1998;338:278-85
2Zivadinov R et al. Neurology 2001;56 (Suppl 3):A192
SUMMARY
Reducing attacks reduces long term brain injury.
Use of IMA’s reduces attacks
Corticosteroids may be synergistic
Consider IVMP or high dose oral to speed visual
recovery
Do not use oral 1 mg/kg/day prednisone
MRI brain for white matter lesions
Based on MS risk, consider IMA’s
NEUROMYELITIS OPTICA
(NMO)
Older (mean 39)
Female most frequent
(9:1)
Usually nonwhite
Optic neuritis may be
sequential or bilateral
simultaneous
Severe visual loss, poor
recovery
Extensive ON lesions on
MR
NMO – 2006 DIAGNOSTIC CRITERIA
Required
•
•
Optic Neuritis
Transverse Myelitis
+ Supportive (2 out of 3)
•
•
•
Brain MRI non-diagnostic for MS
Spinal cord MRI lesion extending
> 3 vertebral segments
Positive NMO-Ig G
NMO – Ig G
NMO Ig-G binds to Aquaporin-4
•
•
•
Astrocyte foot processes
Abluminal surface of blood vessels
Optic nerve, brain stem, hypothalamus, area postrema,
supraoptic nucleus, and periventricular regions
NMO Ig-G
• 75% sensitive
• 91% specific
NMO – SPECTRUM DISORDERS
•
Limited forms of NMO
•
Bilateral simultaneous or recurrent ON
ON associated with “specific” NMO Brain lesions
NMO TREATMENT
High dose corticosteroids +
immunosuppressive agent (azothioprine)
Plasmapheresis
NONARTERITIC ANTERIOR
ISCHEMIC OPTIC NEUROPATHY
(NAION)
Male = female, age > 50
Rapid onset painless visual field + acuity loss
Afferent pupillary defect
VF loss: altitudinal (50-80%), arcuate, or generalized depression
Optic disc edema + flame hemorrhages at onset or preceding
Edema may be segmental
Disc hyperemic, some pallor as evolves
NAION: FUNDUS
Peripapillary
arteriolar narrowing
Fellow eye C/D
small = “crowded
disc”
VS ARTERITIC (AAION)
Disc edema often
pale may be chalkwhite
C/D ratio normal
NAION: FLUORESCEIN
ANGIOGRAPHY
Delayed filling, late
leakage
VS ARTERITIC (AAION)
Delayed filling,
CHOROID + disc
NAION: VISUAL FIELDS
Altitudinal 50-80%
Arcuate
Generalized depression
NAION: CLINICAL COURSE
Generally stable course
Most cases no change VA
42.7% (IONDT)
spontaneous VA
Resolution of disc edema
to optic atrophy in 6-8
weeks (may be segmental)
MRI negative
NAION: TREATMENT
ATTEMPTS
Corticosteroids
Dilantin
Anticoagulants
Antiplatelet agents
Hypertensive agents
Vasodilators
Intraocular pressure
lowering agents
HBOT
ONSF
Dopamine agonists
Neuroprotection
Transvitreal optic
neurotomy
Vitrectomy
Intravitreal triamcinolone
Intravitreal bevacizumab
Transcorneal electrical
stimulation (!)
NONE PROVEN EFFECTIVE
INTRAVITREAL
TRIAMCINOLONE
Beneficial effect reported
for intraocular edema in
diabetic maculopathy &
papillopathy1, radiation
papillopathy2
Postulated to speed edema
resolution, reduce
compartment syndrome
within optic disc
1Al-Haddad
CE et al. Am J Ophthalmol
2004;137:1151-3
2Shields
CL et al. Retina 2006;26:537-44
INTRAVITREAL
TRIAMCINOLONE
Kaderli B et al (2007):
4 subjects NAION, 4 mg
IVtTMC, 10-22 days after
onset
6 controls
VA > 3 lines in 75% (3 of
4) treated vs 33% (2 of 6)
controls
No change in Goldmann VF
Faster edema resolution (3
vs > 4 weeks)
Kaderli B. J Neuro-Ophthalmol 2007;27:238-40
INTRAVITREAL
TRIAMCINOLONE
Kaderli B et al (2007):
Problems:
Small n
VA but not VF
(fixation?)
Does reducing surface
edema affect
retrolaminar damage?
Kaderli B. J Neuro-Ophthalmol 2007;27:238-40
INTRAVITREAL VEGF
INHIBITORS
Beneficial effect reported
in neovascular ARMD by
reducing vascular
permeability
Postulated to speed edema
and exudate resolution,
could reduce compartment
syndrome within optic
disc
Rich RM et al. Retina 2006;26:495-511
INTRAVITREAL VEGF
INHIBITORS
Bennett JL et al (2007):
1 subject NAION
IVt bevacizumab
(Avastin®) 3 weeks
post onset
VA CF 1’ to 20/70
VF qualitative
Disc edema improved
more rapidly than
expected
Bennett JL et al. J Neuro-Ophthalmol 2007;27:238-40
INTRAVITREAL VEGF
INHIBITORS
Kelman SE et al (2009):
30 subjects NAION
IVt bevacizumab
(Avastin®) < 2 weeks
post onset
VA 3 lines in 42%
(12 eyes)
VF no data
Disc edema improved
in 1 mo
Kelman SE: NANOS Annual Meeting 2009
INTRAVITREAL VEGF
INHIBITORS
2 Clinical Trials:
Enetzari et al: 15 eyes
vs control
Bevacizumab + TMC
No benefit
Rootman et al: 27 eyes
vs control
Bevacizumab
No benefit
Entezari M. Ophthalmology 2012;119:879-80
Rootman D. AAO Annual Meeting 2012
INTRAVITREAL VEGF
INHIBITORS
RISKS
Pece (2010): 1/3 cases worsened VF after IVT
bevacizumab
Prescott (2012): 3/5 cases worsened after IVT
bevacizumab
4 case reports 2009-2010 of NAION following IVT
bevacizumab for retinal diseases
Pece A. J Ocular Pharmacol & Ther 2010;26:523-7
Prescott CR. J Neuro-Ophthalmol 2012;32:51-3
ORAL CORTICOSTEROID
364 treated NAION vs
332 controls (1973-2000)
Prednisone 80mg/day X 2
weeks, taper over 2 mo
Begun within 2 weeks
after onset
Hayreh SS. Graefe’s Arch Clin Exp Ophthalmol 2008
ORAL CORTICOSTEROID
Hayreh SS (2008)
At 6 mo
VA > 3 lines
in 69.8% vs
40.5% controls
in pts < 20/70
VF in 40.1%
vs 24.5%
controls
Hayreh SS. Graefe’s Arch Clin Exp Ophthalmol 2008
ORAL CORTICOSTEROID
Hayreh SS (2008)
Disc edema resolved
faster in treated than
controls
Postulated decreased
ONH tissue pressure
and reduced
compartment syndrome
Hayreh SS. Graefe’s Arch Clin Exp Ophthalmol 2008
ORAL CORTICOSTEROID
Hayreh SS (2008)
Problems:
Voluntary group
assignment
Non-masked VA
examiner (SSH)
Post hoc selection
of < 20/70 VA (70
eyes) for outcome
Hayreh SS. Graefe’s Arch Clin Exp Ophthalmol 2008
Lee AG, Biousse V. J Neuro-Ophthalmol 2010
ERYTHROPOIETIN?
MODARRES ET AL
(2011)
31 eyes IVIT erythropoietin
within 30 days (mean 11
days)
At 6 months, VA improved
by > 3 lines in 17 eyes,
54.8% (vs 42% natural
history)
Postulated neuroprotective
effect
Modarres M Br J Ophthalmol 2011;95:992-5
ANTERIOR ISCHEMIC OPTIC
NEUROPATHY
MANAGEMENT
NAION vs AAION: ESR + CRP + TA biopsy
Symptoms critical; FA may help
AAION: Steroids, IV or PO
NAION: no proven effective therapy
Medical evaluation
Follow resolution of disc edema
Consider ASA prophylaxis
PDE5 Inhibitors and NAION
Anthony C. Arnold, MD
Jules Stein Eye Institute
Los Angeles, California
Disclosure
I am Chair of DSMC for Pfizer, Inc PDE5i
study. I am not on a speaker’s bureau. This
is not a Pfizer prepared lecture. I have no
financial interest in the company
PDE5 Inhibitors and the
Nitric Oxide–cGMP Pathway
Vascular Smooth
Muscle Cell
NO
GMP
GC
GTP
PDE5
cGMP
Relaxation
PDE5 is a naturally occurring enzyme
which breaks down cGMP
PDE5 inhibitors selectively inhibit PDE5,
block breakdown of cGMP, relax smooth
muscle by enhancing the effect of nitric
oxide (NO) and cGMP pathway
NO–cGMP pathway also modulates
systemic BP through its effect on basal
vascular tone
PDE5 Inhibitors and NAION
How could PDE5 inhibitors be related to NAION?
1. Exaggerated nocturnal hypotension hypoperfusion of optic
nerve head
2. Local optic nerve head vasodilation compartment syndrome
Levin LA: arterial dilation compresses venous system,
analogous to erectile effect
3. Local optic nerve head vasodilation impaired local optic
nerve head autoregulation
4. Toxic effect of drug or increased cGMP
Levin LA et al. Arch Ophthalmol 2008;126:1582-5
PDE5 Inhibitors and NAION
Problems
“Patients lie.”
– G. House, MD
Dose
Frequency
Other drugs
Onset within window of
effect?
54
PDE5 Inhibitors and NAION
Problems
Confounding factors
Effect of “activity”
(intercourse)
• Physical
• Psychosocial
(adrenaline)
Vasculopathic risk
factors (often the reason
for use of PDE5
inhibitors)
Other vasodilators
(NTG)
55
Risk of Cardiovascular Disease
in Erectile Dysfunction Patients
Risk Factor
Increased Likelihood of Having ED
1
1.5
Diabetes
Hypertension
Current smoker
Obesity
2
2.5
2.69
1.56
1.74
1.60
Saigal CS et al. Arch Intern Med. 2006;23;166:207-212.
3
Sildenafil (VIAGRA) and NAION
Egan and Pomeranz (2000)
52-year-old male, Crohn’s disease, ADD, on Ritalin, crowded
discs
1 hour post dose, blue “lightning bolts” OU, and blurred inferior
VF OS
Superior disc edema, inferior VF loss OS, later superior OA, stable
VF loss
Egan R et al. Arch Ophthalmol. 2000;118:291-292.
Sildenafil (VIAGRA) and NAION
Pomeranz and Bhavsar (2005)
Seven new cases + review 7 prior cases = 14 total
New cases: age 50–69 y, all had at least 1 vasculopathic risk factor
and all had “crowded discs”
Event within 36 hours of dose
Pomeranz HD, Bhavsar AR. J Neuroophthalmol. 2005;25:9-13.
Tadalafil (Cialis) and NAION
Bollinger and Lee (2005)
Rechallenge case
67-year-old, inf VF defect 2 hours following 20-mg dose, resolved
within 24 h X 4 times
5th time: permanent INF ALT VF loss with NAION
Bollinger K, Lee MS. Arch Ophthalmol. 2005;123:400-401.
Interesting Numbers
Patients using sildenafil = > 50 million
Prescriptions written for sildenafil = > 200 million
Tablets dispensed = 2.3 billion
Documented cases of NAION in sildenafil users: < 75
Interesting Numbers (2005)
Reported cases of NAION in Pfizer studies of 52,000
patient-years of observation: 1
Background studies incidence of NAION:
2.5–11.8/100,000 patients/year
Calculated incidence from Pfizer studies:
2.8/100,000 patients/year
Summary
“Viagra-blindness” has been sensationalized
There is a theoretic (but unproven) basis for causal effect
(hypotension, impaired disc autoregulation, compartment
syndrome)
There are < 75 cases, all in patients with risk factors for
NAION
Several cases are plausible for causative effect
FDA-Mandated Study
Pfizer NAION Study
Prospective international multicenter study
Currently recruiting
2012: 64 US + 39 EU centers
New cases of NAION interviewed for use of
PDE5i (any)
Case-crossover methodology (compare window
of exposure c/w half-life to prior non-exposed
windows up to 30 days)
FDA-Mandated Study
Pfizer NAION Study
2012: 567 [of est 800 needed] subjects; 30 [of
40 needed] with PDE5i exposure within 30 day
window
Anticipated recruitment complete in 2012 (after
4 years)
Assess link to NAION
Summary
Advice to patients
No prior NAION (disc-at-risk?)
Prior NAION not within window of effect
Prior NAION within window of effect
HORNER SYNDROME
Ptosis (mild, both
upper & lower lid)
Miosis
Anisocoria
darkness (dilation
lag)
+ Anhidrosis
HORNER SYNDROME
STANDARD WORKUP
Confirm diagnosis
Localize lesion
Determine etiology
CONFIRMATION: COCAINE
HOW?
Cocaine 4-10% OU
If anisocoria > 1
mm, positive
If anisocoria
increases by > 1
mm, positive
Kardon RH. Arch Ophthalmol
1990;108:384-7
CONFIRMATION: COCAINE
DISADVANTAGES
Not commercially available, pharmacy
formulated, nonpreserved, re-supply q 2
months (issues of potency)
Controlled substance (issues of
bureaucracy)
Endpoint may be unclear
CONFIRMATION PARADIGM
SHIFT: APRACLONIDINE
MECHANISM
IOP lowering agent (α2 adrenergic effect)
Very weak α1 adrenergic sympathetic
(mydriatic) effect, no dilation of normals
With denervation supersensitivity in
Horner’s any location, dilates affected
pupil
CONFIRMATION:
APRACLONIDINE
HOW?
Apraclonidine 0.5%
OU
Reverses anisocoria
Also reverses ptosis
(treatment
implications)
Requires denervation
supersensitivity (onset
in days)
Freedman KA. J Neuro-Ophthalmol
2005;25:83-85
LOCALIZATION
Where is the lesion?
Brain (central, postganglionic)
Neck (central, preor post-ganglionic)
Chest (preganglionic)
LOCALIZATION
WHY LOCALIZE?:
Central or
preganglionic =
BAD
Postganglionic =
GOOD
TRUE?
LOCALIZATION: PAREDRINE
(HYDROXYAMPHETAMINE)
HOW?
Paredrine (hydroxyamphetamine) 1%
OU
Anisocoria increase
by > 1 mm positive
for postganglionic
LOCALIZATION: PAREDRINE
(HYDROXYAMPHETAMINE)
DISADVANTAGES
Postganglionic lesions are not necessarily
“good”: carotid dissections and cavernous
sinus/skull base lesions are postganglionic
Test is estimated 85% accurate
Paredrine not commercially available: issues of
formulation, potency
HORNER SYNDROME
Localization
Head: carotid
dissection,
intracranial tumor
Neck: carotid
dissection, tumor
Chest: pulmonary
apex tumor
HORNER SYNDROME
IMAGE (HORNER PROTOCOL)
MRI skull base to T2
MRA
OPTIC NERVE SHEATH
MENINGIOMA
44 year old woman
9 month history slowly progressive visual loss
Exam:
VA: OD 20/50; OS 20/20
APD OD
VF: moderate generalized depression OD
Mild proptosis OD; EOM normal
Optic disc OD: mild atrophy with optociliary shunts
OPTIC NERVE SHEATH
MENINGIOMA
NATURAL HISTORY (TUMOR)
Intracranial spread 14% at 2-4 years
Contralateral spread
Intraorbital at presentation: 0%
Intracranial at presentation: 2-4%
Death, metastasis: 0%
OPTIC NERVE SHEATH
MENINGIOMA
NATURAL HISTORY (VISION)
1-3 VA lines/year decrease (Sibony)
72% VA worse at mean 6.2 years (Kennerdell)
VA mean 50% drop at 10.8 years (Turbin)
84% deteriorated at 22 months (Andrews)
44% lost VA at 6.2 years (Egan)
OPTIC NERVE SHEATH
MENINGIOMA
PRIOR STANDARD THERAPY
Good vision, tumor limited to orbit:
Observe
If marked visual deterioration or MR growth toward
contralateral nerve:
Consider excision
If initial vision poor or tumor extends intracranially:
Consider excision
OPTIC NERVE SHEATH
MENINGIOMA
PRIOR
STANDARD THERAPY
Surgery blinding
No proven effective nonsurgical therapy
Hormonal (RU-486) therapy unproven
No effective chemotherapy
Standard irradiation
• Inconsistent effect
• Risk of delayed radionecrosis brain,
retina, optic nerve (15%)
OPTIC NERVE SHEATH
MENINGIOMA
STEREOTACTIC
CONFORMAL
FRACTIONATED
IRRADIATION
Stereotactic: head
immobilized (fixation
screws)
Delivered with intensity
modulated beams
Fractionated over 20
sessions (5000 cGy) rather
than the 1-6 sessions of
gamma knife
OPTIC NERVE SHEATH
MENINGIOMA
STEREOTACTIC
CONFORMAL
FRACTIONATED IRRADIATION
Decreased risk of contralateral optic
nerve and adjacent CNS damage
Several reports of significant visual
improvement and stability1,2
Longterm damage unknown
1Fineman
MS, et al. Surv Ophthalmol 1999;43:519-24
2Moyer PD, et al. Am J Ophthalmol 2000;129:694-6
OPTIC NERVE SHEATH
MENINGIOMA
STEREOTACTIC CONFORMAL
FRACTIONATED IRRADIATION
Arvold (Harvard) [2009]:
25 cases conformal fractionated (stereotactic photon [13] or
proton [9])
Median dose 50.4 Gy; median followup 30 months (range 3168)
21/22 (95%) improved (64%) or stable (32%)
20/22 (91%) radiographically stable
3/22 (14%) radiation retinopathy (asymptomatic)
Arvold ND, et al. Int J Radiat Oncol Biol Phys 2009;75:1166-72
OPTIC NERVE SHEATH
MENINGIOMA
STEREOTACTIC CONFORMAL
FRACTIONATED IRRADIATION
Metellus (Hopkins) [2010]:
9 cases conformal fractionated stereotactic photon
Median dose 50.4 Gy; median followup 90 months (range 61151)
7/9 (78%) vision improved (64%)
9/9 (100%) radiographically stable
1/9 (11%) radiation retinopathy treated with PRP, central loss
at 11 years
Metellus P et al. Int J Radiat Oncol Biol Phys 2010;76:1-8 (epub)
OPTIC NERVE SHEATH
MENINGIOMA
2012: MANAGEMENT
Consider individual factors
If limited to orbit, with useful vision, stable,
consider observation
If therapy is considered, stereotactic
fractionated conformal radiotherapy is the
initial treatment of choice in essentially every
case
OPTIC NERVE SHEATH
MENINGIOMA
STEREOTACTIC
CONFORMAL
FRACTIONATED
IRRADIATION (to
date)
Complications
Radiation retinopathy
• 4 cases
Radiation optic
neuropathy
• NONE
STEREOTACTIC
CONFORMAL NONFRACTIONATED
IRRADIATION
(RADIOSURGERY)
2% RON in parasellar
masses
“Multisession Cyberknife
radiosurgery”
Miller NR. J Neuro-ophthalmol
2006;26:200-8
Jeremic B, Pitz S. Cancer 2007;110:714-22
OPTIC NERVE SHEATH
MENINGIOMA
2012: MANAGEMENT
Surgical excision reserved for
Eyes with poor vision, progression,
unresponsive to radiotherapy
Disfiguring proptosis or intractable pain,
poor vision, unresponsive to radiotherapy
CASE
31 year old obese
woman (attorney-of course)
Presents to ER with 10
day history of
headache, nausea &
vomiting
Exam: VA 20/15 OU,
normal pupils & EOM;
Fundus & VF shown
CASE
MRI no tumor
LP opening pressure
310 mm, normal
composition
CASE
Is this Idiopathic
Intracranial Hypertension
(IIH)?
Friedman criteria
(2002):
ICP > 250 mm H20
CSF normal
No other specific cause
of ICP
Friedman DI et al. Neurology
2002;59:1492-5
Specific Causes
Tumor
Hydrocephalus
Structural (Chiari,
synostosis, etc)
Meningeal lesion
Medications
Other
CASE
Are we sure there is
no specific cause?
CASE
MR venogram:
Superior sagittal
sinus thrombosis
IIH vs Dural Venous Sinus Disease
Venous sinus
thrombosis
Venous sinus stenosis
Venous sinus AV
fistula (malformation)
Friedman DI. J Neuro-Ophthalmol
2006;26:61-4
CASE
Management
Anticoagulation
ICP-lowering agents
Hypercoagulable state workup (negative)
Volume depletion + prolonged neck
extension?