Introduction to RXS-CDWx

Download Report

Transcript Introduction to RXS-CDWx

Resonant X-ray Scattering
and CDWs.
0
Generic Scattering Experiment
Hard X-ray Scattering
Bragg Diffraction
โ€ข โ„๐œ” ~ 10 to 100 keV.
โ€ข Sensitive to all electrons.
Resonant X-ray Scattering
Core
2p3/2
Soft X-ray Absorption
e.g. Cu L3,2 edge
Cu-L3
โ€ข Element-specific, orbital specific.
โ€ข Sensitive to the intermediate electronic
sates of the particular element you choose.
L2
The challenge is to understand what
โ€œsensitive to intermediate statesโ€
actually means.
So what does RXS measure?
arXiv search: resonant x-ray scattering
All: 916
Last 10 years: 678
Since 2015: 213
Today
โ€ข Thomson Scattering โ€“ Classical Approach
โ€ข Kramers-Heisenberg Equations โ€“ Quantum Approach
โ€ข Resonant X-ray Scattering Cross-Section
โ€ข CDW structure factor in RXS
โ€ข X-ray Absorption Spectroscopy
โ€ข Example in a ladder cuprate system: Sr14Cu24O41.
โ€ข Resonant Inelastic X-ray Scattering (on a future lecture).
4
Thomson Scattering
Classical Approach
5
Electromagnetic radiation
Electro-magnetic fields (aka photons, radiation, X-rays):
Propagation in free space
(Maxwellian Physics):
๐ธ = ๐‘’๐ธ0 ๐‘’ ๐‘–(๐‘˜.๐‘Ÿโˆ’๐œ”๐‘ก)
1
๐ต = ๐‘˜×๐ธ
๐œ”
Energy quantization
๐ธ = โ„๐œ” = โ„Ž๐‘“ =
โ„Ž๐‘
๐œ†
hc = 12.4 keV โ„ซ
Quantum Description
๐ด ๐‘Ÿ, ๐‘ก =
๐œ–,๐œ…
โ„
๐œ–๐‘Ž๐œ–,๐œ… ๐‘’ ๐‘–
2๐œ€0 ๐‘‰๐œ”๐œ…
๐œ….๐‘Ÿโˆ’๐œ”๐‘ก
โ€ 
+ ๐œ– โˆ— ๐‘Ž๐œ–,๐œ…
๐‘’ โˆ’๐‘–
๐œ….๐‘Ÿโˆ’๐œ”๐‘ก
๐‘ โ†’ ๐‘ โˆ’ ๐‘ž๐ด
Generic Scattering Experiment
Differential Scattering
Cross-section
Figure from Elements of Modern X-ray Physics by Jens Als-Nielsen & Des McMorrow
7
Thomson Scattering Classically โ€“ 1 electron
First consider the EM field scattering of a point particle
The incident radiation has an electric field:
๐ธ๐‘–๐‘› = ๐ธ๐‘ฅ0 ๐‘’ โˆ’๐‘–๐œ”๐‘ก
The point particle will vibrate with the electric field. In
turn the point particle will radiate:
๐ธ๐‘Ÿ๐‘Ž๐‘‘
๐‘’2
๐‘’ ๐‘–๐‘˜๐‘…
๐‘… =โˆ’
๐ธ
sin ฮจ
4๐œ‹๐œ–0 ๐‘š๐‘ 2 ๐‘–๐‘› ๐‘…
Re-writing in terms of the Thomson scattering length
๐ธ๐‘Ÿ๐‘Ž๐‘‘
๐‘’ ๐‘–๐‘˜๐‘…
= โˆ’๐‘Ÿ0
sin ฮจ
๐ธ๐‘–๐‘›
๐‘…
This is the result for the in-plane scattering.
In general:
๐ธ๐‘Ÿ๐‘Ž๐‘‘
๐‘’ ๐‘–๐‘˜๐‘…
= โˆ’๐‘Ÿ0
๐œ€ โˆ™ ๐œ€โ€ฒ
๐ธ๐‘–๐‘›
๐‘…
Figure from Elements of Modern X-ray Physics by Jens Als-Nielsen & Des McMorrow
8
Thomson Scattering Classically โ€“ 1 electron
Remembering the expression for the scattering
cross-section we obtain the Thomson differential
cross-section of an EM wave by a free electron.
๐‘‘๐œŽ
๐ผ๐‘ ๐‘
=
= ๐‘Ÿ02 ๐œ€ โˆ™ ๐œ€โ€ฒ
๐‘‘ฮฉ ฮฆ0 ฮ”ฮฉ
Figure from Elements of Modern X-ray Physics by Jens Als-Nielsen & Des McMorrow
9
Thomson Scattering Classically โ€“ 1 atom
Consider a charge distribution around the atom
with a number density ฯ(๐’“). The phase difference
between two volume elements separated by ๐’“ is:
ฮ”๐œ™ ๐’“ = ๐’Œ โˆ’ ๐’Œโ€ฒ โˆ™ ๐’“ = ๐‘ธ โˆ™ ๐’“
So we can sum up the individual contributions from
the scattering fields:
โˆ’๐‘Ÿ0 ๐‘“ 0 ๐‘ธ = โˆ’๐‘Ÿ0
ฯ(๐’“)๐‘’ ๐‘–๐‘ธโˆ™๐’“ ๐‘‘๐’“
And ๐‘“ 0 ๐‘ธ is the atomic structure factor.
So the differential cross-section for EM radiation scattering off an atom is:
Figure from Elements of
Modern X-ray Physics by Jens
Als-Nielsen & Des McMorrow
๐‘‘๐œŽ
โˆ ๐‘Ÿ02 ๐‘“ 0 ๐‘ธ
๐‘‘ฮฉ
2
10
Thomson Scattering Classically โ€“ a crystal
Each unit cell will have multiple atoms. If ๐’“๐’‹ are the
positions of the atoms in the u.c., and each atom
has a specific structure factor ๐‘“๐‘— (๐‘ธ). Then the unit
cell structure factor is:
๐‘“๐‘ข๐‘ ๐‘ธ =
๐‘—
๐‘“๐‘— (๐‘ธ)๐‘’ ๐‘–๐‘ธโˆ™๐’“๐’‹
But we also need to sum over the lattice sites:
๐‘“๐‘๐‘Ÿ๐‘ฆ๐‘ ๐‘ก๐‘Ž๐‘™ ๐‘ธ = ๐‘“๐‘ข๐‘ ๐‘ธ
๐‘’ ๐‘–๐‘ธโˆ™๐‘น๐’
๐‘›
The lattice basis vectors are :
๐‘น๐’ = ๐‘›1 ๐’‚๐Ÿ + ๐‘›2 ๐’‚๐Ÿ + ๐‘›3 ๐’‚๐Ÿ‘
๐‘–๐‘ธโˆ™๐‘น
๐’ to be large?
What is the condition for ๐‘› ๐‘’
And the crystal structure factor is order 1, unless the sum over complex numbers is
coherent, yielding order N=total number of unit cells. This is possible when
๐‘ธ โˆ™ ๐‘น๐’ = 2๐œ‹ × ๐‘–๐‘›๐‘ก๐‘’๐‘”๐‘’๐‘Ÿ
Figure from Elements of
Modern X-ray Physics by Jens
Als-Nielsen & Des McMorrow
or...
๐‘ธ=๐‘ฎ
11
Some practicalities and conventions
โ€ข The detector angle determines ๐‘ธ.
โ€ข Then one needs to rotate the sample to project ๐‘ธ onto the desired sample axis.
๐‘ธ
๐’Œโ€ฒ
๐Ÿ๐œฝ detector angle
(not 2 times theta)
๐’„
๐’Œ
๐’‚
12
Some practicalities and conventions
โ€ข In this figure the scattered photon needs to pass through the sample.
โ€ข This is called transmission geometry or Laue geometry.
๐‘ธ
๐’Œโ€ฒ
๐Ÿ๐œฝ detector angle
(not 2 times theta)
๐œฝ : sample angle
๐’Œ
โ€ข In this example ๐‘ธ โˆฅ ๐’‚. i.e. [H 0 0] Bragg peaks can be probed.
13
Some practicalities and conventions
โ€ข In this figure the scattered photon is reflected off the surface of the sample.
โ€ข This is called Reflection geometry or Bragg geometry.
๐‘ธ
๐’Œโ€ฒ
๐Ÿ๐œฝ detector angle
(not 2 times theta)
๐œฝ : sample angle
๐’Œ
โ€ข In this example ๐‘ธ โˆฅ ๐’„. i.e. [0 0 L] Bragg peaks can be probed.
14
Some practicalities and conventions
โ€ข If the incoming polarization is in the scattering plane, we call this p scattering.
๐‘ธ
๐’Œโ€ฒ
๐Ÿ๐œฝ detector angle
(not 2 times theta)
๐
๐œฝ : sample angle
๐’Œ
15
Some practicalities and conventions
โ€ข If the incoming polarization is perpendicular to the scattering plane, we call
this s scattering.
๐‘ธ
๐’Œโ€ฒ
๐Ÿ๐œฝ detector angle
(not 2 times theta)
๐
๐œฝ : sample angle
๐’Œ
16
Quantum Approach
Kramers-Heisenberg equation(s)
17
Kramers-Heisenberg โ€“ one electron
We will work the simplest Hamiltonian involving the light-matter interaction:
๐ป = ๐ป๐‘’๐‘™ + ๐ป๐‘Ÿ๐‘Ž๐‘‘ + ๐ป๐‘–๐‘›๐‘ก = ๐ป0 + ๐ป๐‘–๐‘›๐‘ก
Where ๐ป๐‘’๐‘™ and ๐ป๐‘Ÿ๐‘Ž๐‘‘ are the unperturbed Hamiltonians and ๐ป๐‘–๐‘›๐‘ก represents the
interaction term which is obtained as a result of the minimal coupling: ๐’‘ โ†’ ๐’‘ โˆ’
๐ป๐‘–๐‘›๐‘ก =
๐‘–
๐‘’๐‘จ
๐‘
.
โˆ’๐‘’
๐‘’2
๐’‘โˆ™๐‘จ+๐‘จโˆ™๐’‘ +
๐‘จโˆ™๐‘จ
2๐‘š๐‘
2๐‘š๐‘
And the quantized radiation field is well known:
๐ด ๐‘Ÿ, ๐‘ก =
๐œ–,๐œ…
โ„
๐œ–๐‘Ž๐œ–,๐œ… ๐‘’ ๐‘–
2๐œ€0 ๐‘‰๐œ”๐œ…
๐‘˜.๐‘Ÿโˆ’๐œ”๐‘ก
โ€ 
+ ๐œ– โˆ— ๐‘Ž๐œ–,๐œ…
๐‘’ โˆ’๐‘–
๐‘˜.๐‘Ÿโˆ’๐œ”๐‘ก
And we want to know the probability amplitude that the electron-radiation system will
transition from a state where the electron is in state A, and the photon in the state ๐‘˜,
before the scattering, into a state with the electron in state B and the scattered photon
in state ๐‘˜โ€ฒ.
18
Kramers-Heisenberg โ€“ one electron
We can work this out in 2nd order time-dependent perturbation theory (Dirac formalism).
1
If ๐‘๐‘š are the linear coefficients of the vector basis for ๐ป0 , the unperturbed Hamiltonian:
๐ป0 ๐‘ข๐‘˜ = ๐ธ๐‘˜ ๐‘ข๐‘˜
And we can expand the solutions to the full Hamiltonian in the unperturbed basis:
๐ธ ๐‘ก
โˆ’๐‘– ๐‘š
๐‘๐‘š (๐‘ก)๐‘ข๐‘š ๐‘’ โ„
๐œ“=
๐‘š
Then, if we assume that at ๐‘ก = 0, before the photon arrives, the unperturbed state is in a
state ๐‘๐‘˜ , then the probability it will be in a state ๐‘๐‘š at time ๐‘ก > 0 is (to 1st order):
1
๐‘๐‘š
1
๐‘ก =
๐‘–โ„
๐‘ก
๐‘‘๐‘ก โ€ฒ
๐‘š ๐ป๐‘–๐‘›๐‘ก
(๐‘ก โ€ฒ )
๐‘˜๐‘’
๐‘–
๐ธ๐‘š โˆ’๐ธ๐‘˜ ๐‘ก โ€ฒ
โ„
0
To 2nd order it will be:
2
๐‘๐‘š
1
๐‘ก =
๐‘–โ„
๐‘ก
๐‘กโ€ฒ
๐‘‘๐‘ก โ€ฒ
2
๐‘›
0
๐‘‘๐‘กโ€ ๐‘š ๐ป๐‘–๐‘›๐‘ก (๐‘กโ€) ๐‘› ๐‘’
๐‘–
(๐ธ๐‘š โˆ’๐ธ๐‘› )๐‘ก โ€ฒโ€ฒ
โ„
๐‘› ๐ป๐‘–๐‘›๐‘ก (๐‘กโ€ฒ) ๐‘˜ ๐‘’
๐‘–
(๐ธ๐‘› โˆ’๐ธ๐‘˜ )๐‘ก โ€ฒ
โ„
0
19
Kramers-Heisenberg โ€“ one electron
โ€ข The 1st order term will turn out to be the elastic Thomson scattering.
โ€ข The 2nd order term will be the resonant scattering cross-section.
The scattering cross-section to second order is:
๐‘‘๐œŽ
๐œ”โ€ฒ
2
= ๐‘Ÿ0
๐‘‘ฮฉ
๐œ”
๐›ฟ๐ด๐ต ๐œ€ โˆ™
๐œ€โ€ฒ
1
โˆ’
๐‘š
๐‘›
๐ต ๐’‘ โˆ™ ๐œ–โ€ฒ ๐‘› ๐‘› ๐’‘ โˆ™ ๐œ–โ€ฒ ๐ด
๐ธ๐‘› โˆ’ ๐ธ๐ด โˆ’ โ„๐œ”
2
For a detailed derivation see the notes online.
Figure from Elements of
Modern X-ray Physics by Jens
Als-Nielsen & Des McMorrow
20
RXS โ€“ multiple electrons
Summing over each unit cell and summing over all the atoms in the unit cell...
๐‘‘๐œŽ
๐‘‘ฮฉ
๐‘’ ๐‘–๐‘ธโˆ™๐‘น๐’Œ
โˆ
๐‘˜
๐‘Ÿ๐‘’๐‘ 
๐‘—
๐‘“๐‘— (๐‘ธ)๐‘’
๐‘–๐‘ธโˆ™๐’“๐’‹
๐‘›
๐ต ๐’‘ โˆ™ ๐œ–โ€ฒ ๐‘› ๐‘› ๐’‘ โˆ™ ๐œ–โ€ฒ ๐ด
๐ธ๐‘› โˆ’ ๐ธ๐ด โˆ’ โ„๐œ”
โ€ข There is a large enhancement term when photon hits an atomic resonance.
โ€ข The denominator selects a specific electronic state.
โ€ข The cross-section can be approximated by the sum of a non-resonant and a
resonant structure factor
๐‘‘๐œŽ
โˆ ๐‘“
๐‘‘ฮฉ
2
= ๐‘“๐‘‡โ„Ž๐‘œ๐‘š๐‘ ๐‘œ๐‘› + ๐‘“๐‘Ÿ๐‘’๐‘ 
2
If ๐ธ๐‘› โˆ’ ๐ธ๐ด = โ„๐œ” then we are doing a scattering experiment that is sensitive to a very
specific electronic associated with such resonance.
21
2
CDW in RXS
Summing over each unit cell and summing over all the atoms in the unit cell...
๐‘‘๐œŽ
๐‘‘ฮฉ
๐‘’ ๐‘–๐‘ธโˆ™๐‘น๐’Œ
โˆ
๐‘˜
๐‘Ÿ๐‘’๐‘ 
๐‘—
๐‘“๐‘— (๐‘ธ)๐‘’
Option 1: Structural distortion.
๐‘‰(๐‘ฅ)
1D-chain - dimerization
๐‘–๐‘ธโˆ™๐’“๐’‹
๐‘›
๐ต ๐’‘ โˆ™ ๐œ–โ€ฒ ๐‘› ๐‘› ๐’‘ โˆ™ ๐œ–โ€ฒ ๐ด
๐ธ๐‘› โˆ’ ๐ธ๐ด โˆ’ โ„๐œ”
Consider the position of each atoms is
slightly distorted due to a CDW:
๐‘…๐‘› = ๐‘›๐‘Ž + ๐‘ข๐‘›
๐‘ข๐‘› = ๐‘ข๐‘› cos ๐‘„๐ถ๐ท๐‘Š (๐‘›๐‘Ž)
Then the structure factor will be:
a
L=Na
๐‘’ ๐‘–๐‘„๐‘…๐‘› โ‰ˆ ๐‘’ ๐‘–๐‘„๐‘›๐‘Ž (1 + ๐‘–๐‘„๐‘ข๐‘› )
Then we end up with a term that looks like:
๐‘’ ๐‘–๐‘„๐‘…๐‘› cos ๐‘„๐ถ๐ท๐‘Š (๐‘›๐‘Ž) โˆ
๐‘›
So
๐‘’ ๐‘–๐‘„๐‘…๐‘› ๐‘’ ๐‘–๐‘„๐ถ๐ท๐‘Š๐‘›๐‘Ž + ๐‘’ ๐‘–๐‘„๐ถ๐ท๐‘Š๐‘›๐‘Ž
๐‘›
๐‘‘๐œŽ
๐‘‘๐œŽ
or
will
๐‘‘ฮฉ ๐‘Ÿ๐‘’๐‘ 
๐‘‘ฮฉ ๐‘‡โ„Ž๐‘œ๐‘š๐‘ ๐‘œ๐‘›
2
have peaks when ๐‘„ =
2๐œ‹
๐‘Ž
± ๐‘„๐ถ๐ท๐‘Š .
22
CDW in RXS
Summing over each unit cell and summing over all the atoms in the unit cell...
๐‘‘๐œŽ
๐‘‘ฮฉ
๐‘’ ๐‘–๐‘ธโˆ™๐‘น๐’Œ
โˆ
๐‘˜
๐‘Ÿ๐‘’๐‘ 
๐‘—
๐‘“๐‘— (๐‘ธ)๐‘’
๐‘–๐‘ธโˆ™๐’“๐’‹
๐‘›
๐ต ๐’‘ โˆ™ ๐œ–โ€ฒ ๐‘› ๐‘› ๐’‘ โˆ™ ๐œ–โ€ฒ ๐ด
๐ธ๐‘› โˆ’ ๐ธ๐ด โˆ’ โ„๐œ”
If for example either ๐‘ฅ ๐‘› โˆ ๐‘’ ๐‘–๐‘„๐ถ๐ท๐‘Š (๐‘›๐‘Ž) or
if the energy states spatially modulate
๐ธ๐‘› โˆ’ ๐ธ๐ด = ๐‘ฃ = ๐‘ฃ0 + ๐›ฟ๐‘ฃ cos ๐‘„๐ถ๐ท๐‘Š (๐‘›๐‘Ž)
we will have a CDW peak.
Option 2: Electronic Modulation
๐‘‰(๐‘ฅ)
1D-chain - dimerization
In the valence modulation case:
a
๐‘“๐‘Ÿ๐‘’๐‘  ๐œ”, ๐‘ฃ โ‰ˆ ๐‘“๐‘Ÿ๐‘’๐‘  ๐œ”, ๐‘ฃ0 +
๐‘“โ€ฒ๐‘Ÿ๐‘’๐‘  ๐œ”, ๐‘ฃ0 ๐›ฟ๐‘ฃ cos ๐‘„๐ถ๐ท๐‘Š (๐‘›๐‘Ž)
L=Na
Putting it together with the crystal summation:
๐‘’ ๐‘–๐‘„๐‘…๐‘› cos ๐‘„๐ถ๐ท๐‘Š (๐‘›๐‘Ž) โˆ
๐‘›
So
๐‘’ ๐‘–๐‘„๐‘…๐‘› ๐‘’ ๐‘–๐‘„๐ถ๐ท๐‘Š๐‘›๐‘Ž + ๐‘’ ๐‘–๐‘„๐ถ๐ท๐‘Š๐‘›๐‘Ž
๐‘›
๐‘‘๐œŽ
will
๐‘‘ฮฉ ๐‘Ÿ๐‘’๐‘ 
have peaks when ๐‘„ =
2๐œ‹
๐‘Ž
2
± ๐‘„๐ถ๐ท๐‘Š . ONLY IN THE RESONANT TERM.
23
X-ray Absorption
Spectroscopy
How do you choose the energy?
24
X-ray Absorption Spectroscopy
Fermi
energy
Soft X-ray Absorption
e.g. Cu L3,2 edge
Cu-L3
L2
Core state
i.e. 2p electron
โ€ข If the core hole is an n=1 state, this is called a K-edge, if n=2 an L edge, if n=3
an M edge, and so on.
โ€ข For example in an L-edge absorption of a transition metal one excites an
electron from a full 2p shell to a 3d state.
X-ray Absorption Spectroscopy
โ€ข The nomenclature is archaic: 2S+1LJ
โ€ข S is the spin, L the orbital angular momentum, and J is the
total magnetic momentum of the open shell. They are
determined by Hundโ€™s rules.
1. For a given electron configuration, the term with lowest energy is also the term with
maximum S.
2. For a given multiplicity, the term with the largest value of the total orbital angular
momentum quantum number L has the lowest energy.
3. For a given term, in an atom with outermost subshell half-filled or less, the level with
the lowest value of the total angular momentum quantum number, J. If the
outermost shell is more than half-filled, the level with the highest value of J is lowest
in energy.
X-ray Absorption Spectroscopy
โ€ข
โ€ข
โ€ข
โ€ข
โ€ข
โ€ข
โ€ข
2๐‘6 3๐‘‘ 9
2๐‘5 3๐‘‘10
โ†’
Ground state: S=1/2, mL=2, and J=1/2+2=5/2.
Ground state: 2D5/2
Excited state: S=1/2, mL=1, and J=1+1/2=3/2
L3 edge: 2P3/2
Excited state: S=1/2, mL=1, and J=1-1/2=1/2
L2 edge: 2P1/2
L3
L2
Hundโ€™s rules:
1. For a given electron configuration, the term with lowest energy is also the term with
maximum S.
2. For a given multiplicity, the term with the largest value of the total orbital angular
momentum quantum number L has the lowest energy.
3. For a given term, in an atom with outermost subshell half-filled or less, the level with
the lowest value of the total angular momentum quantum number J. If the outermost
shell is more than half-filled, the level with the highest value of J is lowest in energy.
X-ray Absorption Spectroscopy
X-ray Absorption Spectroscopy โ€“ e.g. Ce3+
Ce metal
3๐‘‘10 4๐‘“ 1 โ†’ 3๐‘‘ 9 4๐‘“ 2
Ground state: S=1/2, mL=3, and J=2-1/2=5/2.
Ground state: 2F5/2
After absorption 2 open shells: 2D โจ‚ 3H
Excited states with S=1/2: 2F5/2,7/2 2G7/2,9/2 2H9/2,11/2
2I
2
11/2,13/2 J13/2,15/2
โ€ข Excited states with S=3/2: 4F3/2,5/2,7/2,9/2
4G
4
4
5/2,7/2,9/2,11/2 H7/2,9/2,11/2,13/2 I9/2,11/2,13/2,15,2
4J
11/2,13/2,15/2,17/2
โ€ข Figure out the allowed transitions...
โ€ข
โ€ข
โ€ข
โ€ข
โ€ข
Incoming photon energy (eV)
B. T. Thole, et al. โ€“ PRB 1985
Hundโ€™s rules:
1. For a given electron configuration, the term with lowest energy is also the term with
maximum S.
2. For a given multiplicity, the term with the largest value of the total orbital angular
momentum quantum number L has the lowest energy.
3. For a given term, in an atom with outermost subshell half-filled or less, the level with
the lowest value of the total angular momentum quantum number J. If the outermost
shell is more than half-filled, the level with the highest value of J is lowest in energy.
The intermediate state in an RXS cross-section
is extremely complicated. It involves an
electron just above the Fermi energy, under
the influence of a local core-hole potential,
which has a spin, and orbital moment.
The core hole is a very strong perturbation...
30
CDW in Sr14Cu24O41
Crystallization of Oxygen Holes.
31
โ€ข
โ€ข
โ€ข
โ€ข
โ€ข
In this paper the authors show how RXS can be used to see CDWs with extreme sensitivity.
This is an intrinsically hole-doped system with 6 holes per formula unit. 5.2 in the chain, 0.8 in the
ladder.
Proposed to be a โ€œhole crystalโ€.
Need RXS to directly access the holes.
Holes are associated with the hybridized Cu 3d and O 2p orbitals: Use Cu L and O K edges.
Figure from G. Blumberg โ€“ Science 2002
32
Oxygen K-edge in a cuprate material
3dx2-y2
2px
2py
Doped holes in a copper-oxide create a prepeak in Oxygen K-edge
C.T. Chen PRL โ€“ 1991
33
Oxygen K-edge โ€“ cuprate polarization dependence
3dx2-y2
2px
2py
โ€ข Couple to Pz and Px,y orbitals differently.
C.T. Chen PRL โ€“ 1992
34
On and Off Resonance
โ€ข Peak appears near LL=0.2 rlu only on resonance.
35
Full photon energy dependence
โ€ข We infer that this superstructure is electronic in origin.
โ€ข At the Oxygen K-edge the peak is only visible near the Mobile Carrier Peak.
โ€ข This MCP only appears in hole-doped copper-oxide materials.
36
Full photon energy dependence
โ€ข We infer that this superstructure is electronic in origin.
โ€ข At the Oxygen K-edge the peak is only visible near the Mobile Carrier Peak.
โ€ข This MCP only appears in hole-doped copper-oxide materials.
37
Temperature Dependence
38