MMM-Primorsko_2010 - Indico

Download Report

Transcript MMM-Primorsko_2010 - Indico

A MAXIMAL MASS MODEL
Matey Mateev, University of Sofia
Primorsko, 24.06.2010
Matey Mateev
1
V. G. Kadyshevsky, V. N. Rodionov and A. S. Sorin
(M. V. Chizhov, P. Danev)
Almost all detailes may be found in
Towards a Maximal Mass Model
hep-ph/30.08.2007
2
We investigate consequences
of introduction
a new principle in local QFT:
Principle of existence of
a maximal mass M:
m<M
4
On this ground we generalize the Standard Model to
a Maximal Mass Model
The three main components of the Standard Model
are:
1. Local QFT
2. Local gauge SU(3)xSU(2)xU(1) invariance
3. Higgs mechanism for generation of masses
SM describes well the existing experimental data.
5
The fundamental physical constants
с — velocity of light
ħ — Planck constant
G — Newton gravitational constant
allow simple geometrical or group theoretical
interpretation.
For instance in special relativity the 3-dimensional
velocity space is a Lobachevsky space with curvature
-1/с² .


v


 1

c
u 
,
2
2 
v 
 1  v
1 2 
2
c
c 

u02  u 2  1
“Lobachevsky geometry”,
6
(□  m ) ( x)  0
2
 ( x) 
1
(2 )
3
2
e
ip x 
 ( p)d p
4

( p x  p x  p.x )

0 0
2
(m  p ) ( p)  0, p  p  p
2
2
2
2
0
2
m p p
2
2
0
7
m ≤ M
8
We use Anti-De Sitter
geometry of momentum space:
2
2
2
p  p  p5  M
2
0
2
2
p p m
2
0
Here we have:
m ≤ M
9
2

2
2
( p  p  p5  M ) ( p0 , p, p5 )  0

2

2
2
2 ~
 ( p0 , p, p5 )   ( p0  p  p5  M ) ( p0 , p, p5 )
2
0
  ( p, p5 )   1 ( p) 

2
2
~
  

 ( p0 , p, p5 )   ( p, p5 )  
,
p

M

p
.
5

  ( p)

(
p
,

p
)
5   2


The sign of
p5
is a new degree of freedom
10
2

(m  p  p ) ( p0 , p, p5 )  0
2
2
0

m 
m  p  M  p  M 1  2 
 M 
2
2
2
5
2
2
5
2
2
m
cos   1  2 ,
M
( p5  M cos  )( p5  M cos  ) ( p, p5 )  0
11
Klein-Gordon equation in Anti de Sitter momentum space
2M ( p5  M cos  ) ( p, p5 )  0
2M ( p5  M cos  )1 ( p)  0,
2M ( p5  M cos  ) 2 ( p)  0,
~
1 ( p)   ( p  m )1 ( p)
2
2
 2 ( p)  0
12
“Flat” limit is defined as transition from Anti De Sitter
to Minkowski momentum space and it corresponds to:
M  p
2
2
and
p5  M
In the flat limit:
p2
p2
m2
m2
p5  M 1  2  M 
, cos   1  2  1 
2
M
2M
M
2M
and
2 M ( p5  M cos  )  p  m
2
2
13
The action may be written in 5-dimensional form:
Euclidean formulation
De Sitter – O(4, 1)
We may integrate over p5
16
 ( p) 
1 ( p)   2 ( p)
1 ( p ) 
p5
M ,  ( p )  1 ( p )   2 ( p )
 ( p) p5  M ( p)
2M
,  2 ( p) 
 ( p ) p5  M ( p)
2M
S0 ( M )  M 

  d 4 p   ( p)( p 2  m 2 ) ( p)  (  ( p)  M cos  ( p)) 2

17
Fourier transform and configuration
space:
2M
3
e
ipK x K
 ( pL p L  M 2 ) ( p, p5 )d 5 p   ( x, x5 )
(2 ) 2
K , L  1,2,3,4,5.
2
2
( 2  □  M ) ( x, x5 )  0
x5
18
initial data are given at
x5  0 :
Why Euclidean formulation?
Higgs potential:
2 2
1


2
U ( ,  ; M )  ( M 
)( ( x)   ( x)) 2 
2
2
2  2 ( x)   2 ( x) 2 2
 (
 ) .
4
2
mo2
m  m0 1 
4M 2
,
m0  2v.
2

m 
m
 0mM
1  2  1 
2 
M
 2M 
2
2
0
22
Electromagnetic field
Fermion fields
Fermion fields
I.
m 2  p 2  (m  pn n )( m  pn n ), n  1,2,3.4
2
m
m 2  p 2  2M ( p5  M cos  ), cos   1  2
M
2M ( p5  M cos  )  2M sin   pn n  ( p5  M ) 5  2M sin   pn n  ( p5  M ) 5 
2
2

 

I.
II.
D( p, M )  pn n  ( p5  M ) 5  2M sin 
2
2M ( p5  M cos  ) 
  pn n   5 ( p5  M )  2M cos    pn n   5 ( p 5  M )  2M cos  
2  
2 

Dexotic ( p, M )  pn  n  5 ( p5  M )  2M cos  2
31
2 M ( p5  M cos  ) 
 


n
5
n
5
 pn  ( p5  M )  2 M sin  pn  ( p5  M )  2 M sin 
2 
2

Once more the Dirac’s trick (De Sitter space) :
In the flat limit
|p|<<M :
Chiral fermion fields
1  5
1  5
r 
 ; l 

2
2
Weyl spinors
In our case:
( p 2  p52  M 2 ) ( p, p5 )  0
( pK Г K  M )( pN Г N  M ) ( p, p5 )  0
K , N  0,1,2,3,4,5
1
 L ( p, p5 ) 
( M  pK Г K ) ( p, p5 )
2M
1
 R ( p, p5 ) 
( M  pK Г K ) ( p, p5 )
2M
Chirality depends on energy momentum!
41
In 1956 Lee ,Yang and Wu discovered parity
violation in weak interactions i.e. violation of
mirror symmetry. From our point of view this
effect is a direct consequence of de Sitter
geometry of 4-momentum space.
42
Now we have all the bricks to construct a
generalization of the SM based on De Sitter
momentum space geometry and SU c (3)  SU L (2) UY (1)
gauge invariance.
It is local and naturally incorporates the new
physical principle – existence of a maximal
mass M of the objects described by quantum
fields.
44
For instance the term:
becomes:
New P-odd effects
The new free chirality fields may be
represented as:
i n
( R , L ) ( x)  r ,l ( x) 
 ( x)
2M
n
and one predicts corrections to all weak
interaction processes. A global fit of all SM
LEP data gives M ~ 1 TeV
46
New interactions
New Higgs decay mode
H  2l
( )

47

MMM
1
 2
M
a  a  a  292(63)(58) 10
exp
SM
11
 M  300GeV
48
• Specific relations between the
Youkawa coupling constants and M:
M 
2
 v
4 4
f1
2 2
f1
8( v  m )
2
f1

 v
4
f2
2
4
8( v  m )
2
f2
2
f2
 .....
49
Exotic fields
Exotic fields are good
candidates for dark matter:
- they are completely different
from ordinary fermions.
- in the flat limit they do not
have an ordinary analogue.
51
Dark matter production
q
DM
mq
mDM
M
M

q
H
DM
Exotic matter is connected to ordinary matter
through the same mass generation Higgs
mechanism.
52
The new “dark matter” world
may happen to be connected
with us only through gravitation
and Higgs exchange!
53
Conclusions:
1. On the basis of a new physical principle
– the existence of a maximal mass M and
purely geometrical considerations - a
local QFT MMM is constructed.
2. Chirality (parity violation) has clear
geometrical origin.
New P-odd effects are predicted.
3. New interactions are appearing in the
Higgs sector.
4. M is predicted to be in the TeV region.
54
5. We predict “exotic” fermions
(candidates for dark matter) coupled
to the ordinary matter through the
Higgs field.
55
31
Yuri Manin
«GEOMETRY IS A
SPECIFIC
PRESERVATIVE FOR
QUICKLY ROTTENING
PHYSICS»
56
2
«EXPERIMENT =
GEOMETRY +
PHYSICS»
A. EINSTEIN
57
LHC = Geometry + Physics
CERN
58
59
60
THANK YOU!
61