Lecture 4 - Indiana University Bloomington
Download
Report
Transcript Lecture 4 - Indiana University Bloomington
Molecular Modeling:
Beyond Empirical Equations
Quantum Mechanics Realm
C372
Introduction to Cheminformatics II
Kelsey Forsythe
Atomistic Model History
Atomic Spectra
Plum-Pudding Model
Neils Bohr (circa 1913)
Wave-Particle Duality
Planck (circa 1905)
Planetary Model
J. J. Thomson (circa 1900)
UV Catastrophe-Quantization
Balmer (1885)
DeBroglie (circa 1924)
Uncertainty Principle (Heisenberg)
Schrodinger Wave Equation
Erwin Schrodinger and Werner Heisenberg(1926)
Classical vs. Quantum
Trajectory
Real numbers
Deterministic (“The value
is ___”)
Variables
Continuous energy
spectrum
Wavefunction
Complex (Real and
Imaginary components)
Probabilistic (“The average
value is __ ”
Operators
Discrete/Quantized energy
Tunneling
Zero-point energy
Schrodinger’s Equation
Hˆ E
Hˆ - Hamiltonian operator
Hˆ Tˆ Vˆ
N
Gravity?
i
2
2mi
N
2
C
i j
e ie j
ri rj
Hydrogen Molecule
Hamiltonian
Hˆ Tˆ Vˆ
2
Hˆ
2
2p1 2p 2 e21 e22
m
m
m
m
p
p
e
e
1
1
1
1
1
1
C
re1e 2 rp1 p 2 rp1e1 rp1e 2 rp 2 e1 rp 2e 2
Born-Oppenheimer Approximation (Fix nuclei)
Hˆ el Tˆel Vˆel nuclei Vnuclei
2
2
2
1
1
1
1
1
1
e
1
e
2
ˆ
H el
C
C
2 me me
rp1 p 2
re1e 2 rp1e1 rp1e 2 rp 2 e1 rp 2 e 2
Now Solve Electronic Problem
Electronic Schrodinger
Equation
Solutions:
F
(r ) c m m (r )
m
m (r ), the basis set, are of a known form
Need to determine coefficients (cm)
Wavefunctions
gives probability of finding electrons in space
(e. g. s,p,d and f orbitals)
Molecular orbitals are formed by linear combinations of
atomic orbitals (LCAO)
Hydrogen Molecule
VBT
HOMO
LUMO
HOMO
1
( A B )
2
LUMO
1
( A B )
2
Hydrogen Molecule
Bond Density
Ab Initio/DFT
Complete Description!
Generic!
Major Drawbacks:
Mathematics can be cumbersome
Exact solution only for hydrogen
Informatics
Approximate solution time and storage intensive
– Acquisition, manipulation and dissemination problems
Approximate Methods
SCF (Self Consistent Field) Method (a.ka. Mean
Field or Hartree Fock)
Pick single electron and average influence of remaining
electrons as a single force field (V0 external)
Then solve Schrodinger equation for single electron in
presence of field (e.g. H-atom problem with extra force
field)
Perform for all electrons in system
Combine to give system wavefunction and energy (E)
Repeat to error tolerance (Ei+1-Ei)
Recall
Schrodinger Equation
Quantum vs. Classical
Born Oppenheimer
Hartree-Fock (aka SCF/central field) method
Basis Sets
Each atomic orbital/basis function is itself
comprised of a set of standard
functions
Atomic Orbital
F
LCAO
(r ) c m m (r )
m
N
m Cmje
mj r 2
j
Expansion Coefficient
Contraction coefficient
(Static for calculation)
STO(Slater Type Orbital):
~Hydrogen
Atom Solutions
GTO(Gaussian Type Orbital): m
More Amenable to computation
mj r
2
STO vs. GTO
GTO
Improper behavior for
small r (slope equals
zero at nucleus)
Decays too quickly
Basis Sets
Basis Sets
Molecular Orbital
F
(r ) cm m (r ) What “we” do!!
m
Atomic Orbital
N
m Cmj j
STO
GTO/CGTO
j
Optimized using atomic ab initio calculations
PGTO
j r 2
j e
Gaussian Type Orbitals
Primitives
,n,l,m (r,, ) NYl,m (, )r
(2n2l ) r 2
e
Shapes typical of H-atom orbitals (s,p,d etc)
Contracted
Vary only coefficients of valence (chemically
interesting parts) in calculation
Minimum Basis Set (STO-3G)
The number of basis functions is equal to the
minimum required to accommodate the # of
electrons in the system
H(# of basis functions=1)-1s
Li-Ne(# of basis functions=5) 1s,2s,2px, 2y, 2pz
Basis Sets
Types:
STO-nG(n=integer)-Minimal Basis Set
Approximates shape of STO using single contraction of
n- PGTOs (typically, n=3)
Intuitive
The universe is NOT spherical!!
3-21G (Split Valence Basis Sets)
Core AOs 3-PGTOs
Valence AOs with 2 contractions, one with 2 primitives
and other with 1 primitive
Basis Sets
Types:
3-21G(*)-Use of d orbital functions (2nd row atoms
only)-ad hoc
6-31G*-Use of d orbital functions for non-H atoms
6-31G**-Use of d orbital functions for H as well
Examples
C
STO-3G-Minimal Basis Set
3 primitive gaussians used to model each STO
# basis functions = 5 (1s,2s,3-2p’s)
3-21G basis-Valence Double Zeta
1s (core) electrons modeled with 3 primitive gaussians
2s/2p electrons modeled with 2 contraction sets (2primitives and 1 primitive)
# basis functions = 8 (1s,2s,6-2p’s)
Polarization
Addition of higher angular momentum
functions
HCN
Addition of p-function to H (1s) basis better
represents electron density (ie sp character) of HC
bond
Diffuse functions
Addition of basis functions with small exponents
(I.e. spatial spread is greater)
Anions
Radicals
Excited States
Van der Waals complexes (Gilbert)
Ex. Benzene-Dimers (Gilbert)
w/o Diffuse functions T-shaped optimum
w/Diffuse functions parallel-displaced optimum
Computational Limits
Hartree-Fock limit
NOT exact solution
Does not include correlation
Does not include exchange
Exact Energy*
Correlation/Exchange
Basis set size
BO not withstanding
Correcting
Approximations
Accounting for Electron Correlations
DFT(Density Functional Theory)
Moller-Plesset (Perturbation Theory)
Configuration Interaction (Coupling single
electron problems)
Computational Reminders
HF typically scales N4
As increase basis set size accuracy/calculation time increases
ALL of these ideas apply to any program utilizing ab initio
techniques NOT just Spartan (Gilbert)
Quick Guide
Basis
Meaning
STO-3G(minimal basis)
3-21G-6-311G(split-valence
basis)
*/**
3 PGTO used for each
STO/atomic orbital
Additional basis functions
for valence electrons
Addition of d-type orbitals
to calculation (polarization)
+/++
** (for H as well)
Diffuse functions (s and p
type) added
++ (for H as well)
Modeling Nuclear Motion
IR - Vibrations
NMR – Magnetic Spin
Microwave – Rotations
Modeling Nuclear Motion (Vibrations)
Harmonic Oscillator Hamiltonian
2
1
ˆ
H (r )
(r ) 2
2 r 2
8.35E-28
8.35E-28
8.35E-28
8.35E-28
1.4E-18
8.35E-28
8.35E-28
8.35E-28
1.2E-18
8.35E-28
8.35E-28
1E-18
8.35E-28
8.35E-28
8E-19
8.35E-28
8.35E-28
8.35E-28
6E-19
8.35E-28
8.35E-28
4E-19
8.35E-28
8.35E-28
2E-19
8.35E-28
8.35E-28
8.35E-28
0
8.35E-28
0
8.35E-28
8.77567E+14
20568787140
2.03098E-18
1.05374E-18
8.77567E+14
8.77567E+14
8.77567E+14
8.77567E+14
8.77567E+14
8.77567E+14
8.77567E+14
8.77567E+14
8.77567E+14
8.77567E+14
8.77567E+14
8.77567E+14
8.77567E+14
8.77567E+14
8.77567E+14
8.77567E+14
8.77567E+14
8.77567E+14
8.77567E+14
8.77567E+14
0.5
1
8.77567E+14
20568787140
20568787140
20568787140
20568787140
20568787140
20568787140
20568787140
20568787140
20568787140
20568787140
20568787140
20568787140
20568787140
20568787140
20568787140
20568787140
20568787140
20568787140
20568787140
20568787140
1.5
20568787140
1.54682E-18
1.34201E-18
1.15913E-18
9.96207E-19
8.51451E-19
7.23209E-19
6.09973E-19
5.10362E-19
4.2311E-19
3.47061E-19
2.81155E-19
2.24426E-19
1.75987E-19
1.35031E-19
1.0082E-19
7.26787E-20
4.99924E-20
3.22001E-20
1.87901E-20
2 9.29638E-21
2.5
3.29443E-21
8.82365E-19
8.02375E-19
7.26185E-19
6.53795E-19
5.85205E-19
5.20415E-19
4.59425E-19
4.02235E-19
3.48845E-19
2.99255E-19
2.53465E-19
2.11475E-19
1.73285E-19
1.38895E-19
1.08305E-19
8.15147E-20
5.85247E-20
3.93347E-20
2.39447E-20
31.23547E-20
3.5
4.56475E-21
Empirical
for Hydrogen
Molecule9.66155E-19
8.77567E+14Potential
20568787140
1.77569E-18
4