Transcript Document
Chemistry 125: Lecture 7
Sept. 16, 2009
Quantum Mechanical
Kinetic Energy
After pointing out several discrepancies between electron difference density results and
Lewis bonding theory, the course introduces quantum mechanics. The wave function Ψ,
which beginning students find confusing, was equally confusing to the physicists who created
quantum mechanics. The Schroedinger equation reckons kinetic energy through the shape
of Ψ. When Ψ curves toward zero, kinetic energy is positive; but when it curves away, kinetic
energy is negative! A simple tool allows finding Ψ for one-dimensional problems.
For copyright
notice see final
page of this file
Exam 1 - Friday, Sept. 25 !
Covers Lectures through Wednesday, Sept. 23
Including:
Functional Groups
X-Ray Diffraction
1-Dimensional Quantum Mechanics
& 1-Electron Atoms
(Sections I-V of quantum webpage
& Erwin Meets Goldilocks )
IMPORTANT PROBLEMS
therein due Monday, Sept. 21
Get-aquainted with Erwin at Thursday Discussion
Exam Review 8-10 pm Wednesday, Sept. 23, Room TBA
Dunitz et al. (1981)
Surprising only for its beauty
Dunitz et al. (1981)
Pathological Bonding
Lone "Pair"
of N atom
H
H
H
H
H
H
Bond Cross Sections
Dunitz et al. (1981)
Missing Bond?
Pathological Bonding
Missing
Bond !
Bent
Bonds !
In three weeks we’ll understand these pathologies.
Dunitz et al. (1981)
Lewis Pairs/Octets provide a
pretty good bookkeeping device
for keeping track of valence
but they are hopelessly crude
when it comes to describing
actual electron distribution.
There is electron sharing (~5% of Lewis's prediction).
There are unshared "pairs" (<5% of Lewis's prediction).
Is there a Better Bond Theory,
maybe even a Quantitative one?
YES!
Chemical
Quantum
Mechanics
Erwin Schrödinger (Zurich,1925)
WaveAgeEquation
38
(1926)
http://www.zbp.univie.ac.at/schrodinger/lebensbilder/bilder9.htm
Felix Bloch, Physics Today (1976)
"Once at the end of a colloquium I heard Debye saying
something like: Schrödinger, you are not working right
now on very important problems anyway. Why don't you
tell us sometime about that thesis of de Broglie?
"So in one of the next colloquia, Schrödinger gave a
beautifully clear account of how de Broglie associated
a wave with a particle…When he had finished, Debye
casually remarked that he thought this way of talking was
rather childish… he had learned that, to deal properly
with waves, one had to have a wave equation.
It sounded rather trivial and did not seem to make a
great impression, but Schrödinger evidently thought
a bit more about the idea afterwards."
www.uni-leipzig.de/ ~gasse/gesch1.html
"Just a few weeks later he gave
another talk in the colloquium,
which he started by saying: My
colleague Debye suggested that
one should have a wave equation:
Well, I have found one."
Hy = E y
December 1933 - Stockholm
Paul
Dirac
Werner
Heisenberg
Erwin
Schrödinger
AIP Emilio Segre Visual Archives, Peierls Collection
Schrödinger Equation
Hy =Ey
???
Leipzig (1931)
1952 (NMR)
Felix
Bloch
Werner
Heisenberg
AIP Emilio Segre Visual Archives, Peierls Collection
Felix Bloch & Erich Hückel on
(1926)
y
Gar Manches rechnet Erwin schon
Mit seiner Wellenfunktion.
Nur wissen möcht man gerne wohl,
Was man sich dabei vorstell'n soll.
Erwin with his Psi can do
calculations, quite a few.
We only wish that we could glean
an inkling of what Psi could mean.
Even Schrödinger was never
comfortable with what really means:
Wikipedia
“etwa
somüßte
wie Cervantes
einmal
denzuletzt
Sancho
Schrödinger’s
Grave
Nun
werden
sie
vielleicht
Ehrlich
ichmich
darauf
bekennen,
Alpbach,
Austria
Panza,
sein
liebes
Eselchen
auf
dem
fragen,
was
sind denn
nunweiß,
aberer zu
ich weißjaes
sowenig,
als ich
reiten
pflegte,
verlieren
läßt. Aber
ein paar
wirklich
diese
Korpuskeln,
diese
wo Sancho
Panzas
zweites
Eselchen
Schrödinger
Lecture
Kapitel später
hat der Autor
das vergessen und
Atome
- Moleküle.
hergekommen
ist.
das gute Tier
ist wieder
da.
“What
is Matter”
NowCervantes
you will
perhaps
conclusion
I must
admit
honestly,
onin
this
subject
“Once
had
Sancho
Panza
lose
(1952)
the
well-loved
little
donkey
hethen,
rode Ion.
ask
me,just
“Soas
what
are
mean
I know
little,
asthey
I know
But
a couple
latersecond
author
really,
thesechapters
corpuscles
–the
these
atoms –
where
Sancho
Panza’s
little
had
forgotten
and
the
good
beast
molecules?”
donkey came from.
reappeared.
by permission from Supposé CD
Erwin Schrödinger Was ist Materie?
First we’ll learn how
to findand use it.
Later we learn what it
means.
)
?
a Function of What?
Named by "quantum numbers"
(e.g. n,l,m ; 1s ; 3dxy ; s p p*)
Function of Particle Position(s)
[and sometimes of time and "spin"]
N particles 3N arguments!
[sometimes as many as 4N+1]
We focus first on one particle, one dimension,
then three dimensions (one atomic electron),
then atoms with several electrons,
then molecules and bonding,
finally functional groups & reactivity
time-independent
(for “stationary” states)
Schrödinger Equation
Hy=Ey
(NOT H times y )
( E times y )
Hy=Ey
Hy
=
y
=E
Kinetic Energy + Potential Energy = Total Energy
Hold your breath!
Given - Nothing to do with y
(Couloumb is just fine)
Kinetic Energy?
Const
i
(adjusts for
desired units)
1m v2
2 i i
Sum of classical
kinetic energy
over all particles
of interest.
Fine for our great grandparents
Kinetic Energy!
h2
8p2
i
1 2y 2y 2y
+
+
mi xi2
yi2 zi2
y
One particle, One dimension:
C
1 d2y
m dx2
y
Note:
Involves the shape of y,
not just its value.
C
m
Curvature of
y
y
Solving a Quantum Problem
Given : a set of particles
their masses & their potential energy law
[ e.g. 1 Particle/1 Dimension : 1 amu & Hooke's Law ]
To Find : T
a Function of the position(s) of the particle(s)
Such that H/ is the same (E) everywhere
AND remains finite!!!
(single-valued, continuous, 2 integrable)
What's Coming?
1 Particle, 1 Dimension
1-Electron Atoms (3 Dimensions)
Sept 25 Exam
Many Electrons & Orbitals
Molecules & Bonds
Functional Groups & Reactivity
The Jeopardy Approach
Kinetic Energy
Answer
(y )
C
y
m
= sin (x)
= sin (ax)
Curvature of
C/m
C - sin (x)
(particle in free space)
a C/m
C - a2 sin (ax)
m
=ae=-x 3
mass and
Potential Energy(x)
Independent of x
Const PE
m 2 sin (x)
( a > 1 shortened wave)
= ex
y
Problem
sin (ax)
-C/m
’’
higher kinetic energy
1 / 2
Const PE > TE
Negative kinetic energy!
-C/m
m e
C ex
x
”
Not just a mathematical curiosity.
your great
grandparent’s
mv2. to nuclei!
Actually NOT
happens
for all
electrons 1/2
bound
(at large distance, where 1/r ceases changing much)
V
E
0
(x)
+
Potential Energy from Arbitrary Shape
via Kinetic Energy
Curving
toward = 0
Positive
Curving away
from = 0
Negative
Positive
Zero
Negative
?
x
0
•
_
Curvature
Amplitude
•
The potential energy
function for this
must be a
double minimum.
Total Energy
From “Jeopardy” Approach
to Recipe for Solution of
Schrödinger Equation
Using Guessed Total Energies
Rearranging Schrödinger to give
a formula for curve tracing.
C
Curvature of
m
Curvature of
y
y
y
=
y
+V=E
m
(VE)
C
Curves away from 0 for V>E; toward 0 for V<E.
Since m, C, V(x) are given, this recipe allows tracing (x) in steps,
from initial (0) [= 1], with initial slope [0], and a guessed E.
100 kcal/mole
Too Cold
ErwinNodes
Meets and Quantization
Goldilocks
in One Dimension
Danger
Danger
Negative
Negative
Just Right!
from
Kinetic
Kinetic
Erwin
Meets
Goldilocks
Energy
Energy
Guess 21 kcal/mole
(for
Wiki see
20.74 kcal/mole
(Curve Away
Guess 20 kcal/mole
from Baseline)
0
Monday Problem Set)
(Curve Away
from Baseline)
Too Hot 2.5Å
End of Lecture 7
Sept 16, 2009
Copyright © J. M. McBride 2009. Some rights reserved. Except for cited third-party materials, and those used by visiting
speakers, all content is licensed under a Creative Commons License (Attribution-NonCommercial-ShareAlike 3.0).
Use of this content constitutes your acceptance of the noted license and the terms and conditions of use.
Materials from Wikimedia Commons are denoted by the symbol
.
Third party materials may be subject to additional intellectual property notices, information, or restrictions.
The following attribution may be used when reusing material that is not identified as third-party content:
J. M. McBride, Chem 125. License: Creative Commons BY-NC-SA 3.0
100 kcal/mole
Erwin Meets
Goldilocks
Could there be an
energy between?
20.74 kcal/mole
12.45 kcal/mole
4.15 kcal/mole
0
NODES
0 because of
sign change
More
Energy
Could
there
be a
Psi?
lower-energy
More Curvature
More Nodes
2.5Å