Transcript Document
Electron Correlation Methods
HF method: electron-electron interaction is replaced by an average interaction
EcHF E0 EHF
E0 – exact ground state energy
EHF – HF energy for a given basis set
EcHF 0
- represents a measure for the error introduced by the HF approximation
Dynamical correlation
Non-dynamical correlation
– related to the movements of the individual electrons
- short range effect
- related to the fact that in certain circumstances the
ground state SD wave-function is not a good approximation
to the true ground state because there are other Slater
determinants with comparable energies
multideterminantal wave-function
Ψ a0 ΨHF aiΨi
usually a01
i
Frank Jensen, Introduction to Computational Chemistry, John Wiley and Sons, New York, 1999
Excited Slater Determinants (ESD)
Suppose we have N electrons and K basis functions used to expand the MOs
RHF formalism will give N/2 occupied MOs and K-N/2 virtual MOs
ESD
– obtained by replacing MOs which are occupied in the HF determinant
by unoccupied MOs
- singly, doubly, triply, quadruply, etc. excited relative to the HF determinant
Total number of ESD depends on the size of the basis set
If all the possible ESD (in a given basis set) are included then all the electron
correlation energy is recovered
Methods including electron correlation are two-dimensional !!
In many cases the interest is only in calculating the correlation energy associated with
the valence electrons
Frozen Core Approximation (FCA)
= limiting the number of ESD to only those which can be generated by exciting
the valence electrons
- it is not justified in terms of total energy because the correlation of core
electrons gives substantial contribution. However, it is essentially a constant
factor which drops out when relative energies are calculated
Methods for taking the electron correlation into account:
Configuration Interaction (CI)
Many Body Perturbation Theory (MBPT)
Moller-Plesset (MP) Theory
Coupled Cluster (CC)
Configuration Interaction (CI)
-based on the variational principle, the trial wave-function being expressed as a
linear combination of Slater determinants
The expansion coefficients are determined by imposing that the energy should be
a minimum. The MOs used for building the excited determinants are taken from
HF calculation and held fixed
CI a0 SCF
a a a
S
S
S
D
D
D
T
T
...
T
In the large basis set limit, all electron correlation methods scale at least as K5
Example
Molecule: H2O
Basis set: 6-31G(d)
=> 19BF => 38 spin MOs (10 occupied, 28 virtual)
The total number of excited determinants will be C38 398637556
Many of them will have different spin multiplicity and can therefore be left out in
the calculation.
Generating only the singlet Configurational State Functions (CSF) we still obtain
1002001 determinants
10
Full CI method is only feasible for very small systems!!!
Configuration State Functions
Consider a single excitation from the RHF
reference.
Both FRHF and F(1) have Sz=0, but F(1) is not an
eigenfunction of S2.
FRHF
F(1)
Linear combination of singly excited
determinants is an eigenfunction of S2.
Configuration State Function, CSF
(Spin Adapted Configuration, SAC)
Singlet CSF
Only CSFs that have the same
multiplicity as the HF reference
F1,2 1(1) 2(2) 1 (2) 2 (1)
Truncated CI methods
CI a0SCF aS S aDD aT T ...
s
D
T
Truncating the expansion given above at level one =>
CIS
CID
CISD
CISDT
CISDTQ
- CI with only single excited determinants
- CI with only doubly excited determinants
- CI with Singles and Doubles (scales as K6)
- CI with Singles, Doubles and Triples (scales as K8)
- CI with Singles, Doubles, Triples and Quadruples (scales as K10)
- gives results close to the full CI
- can only be applied to small molecules and small basis sets
CISD
- the only CI method which is generally feasible for a large variety of systems
- recovers 80-90% of the available correlation energy
Multi-Configuration Self-Consistent Field Method (MCSCF)
- is the CI method in which the MOs are also varied, along with the coefficients of
the CI expansion
MCSCF methods
- are mainly used for generating a qualitatively correct wave-function
- recover the static part of the correlation (the energy lowering is
due to the greater flexibility in the wave-function)
dynamic correlation – the correlation of the electrons’ motions
In MCSCF methods the necessary configurations must be selected
CASSCF (Complete Active Space SCF)
- the selection of the configurations is done by partitioning the MOs into
active and inactive spaces
active MOs - some of the highest occupied and some of the lowest unoccupied MOs
Within the active MOs a full CI is performed
A more complete notation for this kind of methods is:
[n,m]-CASSCF
- n electrons are distributed in all possible ways in m orbitals
Carry out Full CI and orbital optimization within a small
active space.
9
8
7
Six-electron in six-orbital MCSCF is shown (written as
[6,6]-CASSCF)
6
Complete Active Space Self-consistent Field (CASSCF)
H2O MOs
5
4
3
2
1
HF
Why?
1.
To have a better description of the ground or
excited state. Some molecules are not welldescribed by a single Slater determinant, e.g. O3.
2. To describe bond breaking/formation; Transition
States.
3. Open-shell system, especially low-spin.
4. Low lying energy level(s); mixing with the ground
state produces a better description of the
electronic state.
Alternative to CASSCF Restricted Active Space SCF (RASSCF)
RASSCF – the active MOs are further divided into three sections: RAS1, RAS2 and RAS3
RAS1 space – MOs doubly occupied in the HF reference determinant
RAS2 space – both occupied and virtual MOs in the HF reference
determinant
RAS3 space – MOs empty in the HF reference determinant
Configurations in RAS2 are generated by a full CI
Additional configurations are generated by allowing for example a
maximum of two electrons to be excited from RAS1 and a maximum of
two electrons to be excited to RAS3
RASSCF combines a full CI in a small number of MOs (RAS2) and a CISD
in a larger MO space (RAS1 and RAS3)
Multi-reference Configuration Interaction
- involve the excitations of electrons out of all the determinants which enter the MCSCF
MØller-Plesset Perturbation Theory
- a perturbational method in which the unperturbed Hamiltonian is chosen as a sum over Fock operators
N
N
H 0 Fi hi ( J ij Kij ) hi 2 Vee
i 1
i 1
i 1
j 1
N
N
The sum of Fock operators counts the average electron-electron repulsion twice and the
perturbation is chosen the difference:
Vee 2 Vee
where Vee represents the exact operator for the electron-electron repulsion
It can be shown (Jensen, pag.127) that the zero order wave-function is the HF determinant
while the zero order energy is just the sum of MO energies. Also, the first order energy is
exactly the HF energy so that in this approach
the correlation energy is recovered starting with the second order correction (MP2 method)
In addition, the first contribution to the correlation energy involves a sum over doubly excited
determinants which can be generated by promoting two electrons from occupied MOs i and j to
virtual MOs a and b. The explicit formula for the second order Moller-Plesset correction is:
occ vir
E (MP2)
i j ab
MP2 method
FF
i
j | F a Fb Fi F j | Fb F a
2
i j a b
- scales as K5
- accounts for cca. 80-90% of the correlation energy
- is fairly inexpensive (from the computational resources perspective) for
systems with reasonable number of basis functions (100-200)
Coupled Cluster (CC) Methods
The idea in CC methods is to include all corrections of a given type to infinite order.
The wave-function is written as:
cc eT 0
1 k
T
k
!
k 0
e 1 T T ...
where:
T
with the cluster operator given by:
2
T T1 T2 T3 ... TN
Acting on the HF reference wave function, the Ti operator generates all i-th excited Slater
determinants:
occ vir
T10 tia ia
i
a
occ vir
T2 0 tijab ijab
i j a b
...
The exponential operator may be rewritten as:
1
1
eT 1 T1 T2 T12 T3 T1T2 T13 ...
2
6
First term generates the reference HF wave-function
Second term generates all singly excited determinants
First parentheses generates all doubly excited states (true doubly excited states by T2 or product of
singly excited states by the product T1T1
The second parentheses generates all triply excited states, true (T3) or products triples
(T1T2, T1T1T1)
The energy is given by:
occ vir
Ecc E0 tijab tia t bj tibt aj F i F j | F a F b F i F j | F b F a
i j a b
So, the coupled cluster correlation energy is determined completely by the singles and doubles
amplitudes and the two-electron MO integrals
Truncated Coupled Cluster Methods
If all TN operators are included in T the CC wave-function is equivalent to full CI wavefunction, but this is possible only for the smallest systems.
Truncation of T
Including only the T1 operator there will be no improvement over HF, the lowest level of
approximation being T=T2 ( CCD=Coupled Cluster Doubles)
If T=T1+T2 CCSD
If T=T1+T2+T3 CCSDT
scales as K6
scales as K8
the only generally applicable model
Basis Set Superposition Error
Quantum chemical calculations are frequently used to estimate strengths of hydrogen bonds.
We can distinguish between intermolecular and intra-molecular hydrogen bonds. The first
of these are usually much more straightforward to deal with.
1. Intermolecular Hydrogen Bond energies
In this case is is normal to define the hydrogen bond energy as the energy of the
hydrogen bonded complex minus the energies of the constituent molecules/ions.
Let us first consider a simple example with high (C3v) symmetry – H3N...HF
Electronic energy (a.u.)
NH3
-56.19554
HF
-100.01169
H3N…HF
-156.22607
EHB
NH3 + HF H3N…HF
EHB = 2625.5 x (156.22607 - 100.01169
- 56.19554)= 38.8 kJ/mol
Counterpoise Correction
EHB = E( H3N ... HF ) – E(HF in basis of H3N ... HF ) - E(H3N in basis of HN3 ... HF)
Practical aspects
The Massage keyword requests that the molecule specification and basis set data be modified after
it is generated. The Massage keyword thus makes it possible to add additional uncontracted basis
functions to a standard basis set.
The following input file performs a portion of a counterpoise calculation, removing the HF molecule
but leaving its basis functions. Note that the dummy atom is not included in the numbering of the
centers.
# HF/6-31G* Massage Test
References:
HF + H2O interaction energy: HF removed
1.
0
X
H
F
O
H
H
1
1
2
2
4
4
1.0
rHF
rHO
rOH
rOH
1
1
2
2
90.0
90.0 3 180.0
aHOH 1 90.0
aHOH 5 180.0
rHF 0.9203
rHO 1.8086
rOH 0.94
aHOH 126.4442
2.
3.
Pedro Salvador Sedano, Implementation and
Application of BSSE Schemes to the Theoretical
Modeling of Weak Intermolecular Interactions,
PhD Thesis, Department of Chemistry and Institute
of Computational Chemistry, University of Girona;
http://www.tdx.cesca.es/TESIS_UdG/AVAILABLE/TDX-0228102130339//02tesis_corrected.pdf
M. L. SENENT, S. WILSON, Intramolecular Basis Set
Superposition Errors, International Journal of Quantum
Chemistry, Vol. 82, 282–292 (2001)
A. BENDE, Á. VIBÓK, G. J. HALÁSZ, S. SUHAI, BSSE-Free
Description of the Formamide Dimers, International Journal
of Quantum Chemistry, Vol. 84, 617–622 (2001)
1 Nuc 0.0
2 Nuc 0.0
Gaussian Help
Exercise
Calculate the interaction energies in the DNA base pairs
Adenine-Thymine and Cytosine-Guanine. Consider the BSSE
You can look for pdb files of DNA bases at:
http://www.biocheminfo.org/klotho/pdb/
Adenine-Thymine base pair
Guanine-Cytosine base pair