Lecture 3: Quantum simulation algorithms
Download
Report
Transcript Lecture 3: Quantum simulation algorithms
Lecture 3: Quantum
simulation algorithms
Dominic Berry
Macquarie University
1996
Simulation of Hamiltonians
๏ฎ
We want to simulate the evolution
๐๐ก = ๐ โ๐๐ป๐ก |๐0 โช
๏ฎ
The Hamiltonian is a sum of terms:
๐
๐ป=
๐ปโ
โ=1
Seth Lloyd
๏ฎ
We can perform
๐ โ๐๐ปโ ๐ก
๏ฎ
For short times we can use
๐ โ๐๐ป1๐ฟ๐ก ๐ โ๐๐ป2 ๐ฟ๐ก โฆ ๐ โ๐๐ป๐โ1๐ฟ๐ก ๐ โ๐๐ป๐ ๐ฟ๐ก โ ๐ โ๐๐ป๐ฟ๐ก
๏ฎ
For long times
๐ โ๐๐ป1 ๐ก/๐ ๐ โ๐๐ป2 ๐ก/๐ โฆ ๐ โ๐๐ป๐ ๐ก/๐
๐
โ ๐ โ๐๐ป๐ก
Simulation of Hamiltonians
๏ฎ
1996
For short times we can use
๐ โ๐๐ป1๐ฟ๐ก ๐ โ๐๐ป2 ๐ฟ๐ก โฆ ๐ โ๐๐ป๐โ1๐ฟ๐ก ๐ โ๐๐ป๐ ๐ฟ๐ก โ ๐ โ๐๐ป๐ฟ๐ก
๏ฎ
๏ฎ
๏ฎ
๏ฎ
This approximation is because
๐ โ๐๐ป1๐ฟ๐ก ๐ โ๐๐ป2 ๐ฟ๐ก โฆ ๐ โ๐๐ป๐โ1๐ฟ๐ก ๐ โ๐๐ป๐ ๐ฟ๐ก
= ๐ โ ๐๐ป1 ๐ฟ๐ก + ๐ ๐ฟ๐ก 2 ๐ โ ๐๐ป2 ๐ฟ๐ก + ๐ ๐ฟ๐ก 2 โฆ
โฆ ๐ โ ๐๐ป๐ ๐ฟ๐ก + ๐ ๐ฟ๐ก 2
Seth Lloyd
= ๐ โ ๐๐ป1 ๐ฟ๐ก โ ๐๐ป2 ๐ฟ๐ก โฆ โ ๐๐ป๐ ๐ฟ๐ก + ๐ ๐ฟ๐ก 2
= ๐ โ ๐๐ป๐ฟ๐ก + ๐ ๐ฟ๐ก 2
= ๐ โ๐๐ป๐ฟ๐ก + ๐(๐ฟ๐ก 2 )
If we divide long time ๐ก into ๐ intervals, then
๐
๐
๐ โ๐๐ป๐ก = ๐ โ๐๐ป๐ก/๐ = ๐ โ๐๐ป1 ๐ก/๐ ๐ โ๐๐ป2๐ก/๐ โฆ ๐ โ๐๐ป๐ ๐ก/๐ + ๐ ๐ก/๐ 2
๐
โ๐๐ป
๐ก/๐
โ๐๐ป
๐ก/๐
โ๐๐ป
๐ก/๐
1
2
๐
= ๐
๐
โฆ๐
+ ๐ ๐ก 2 /๐
Typically, we want to simulate a system with some maximum
allowable error ๐.
Then we need
๐ โ ๐ก 2 /๐.
2007
Higher-order simulation
๏ฎ
Berry, Ahokas,
Cleve, Sanders
A higher-order decomposition is
๐ โ๐๐ป1 ๐ฟ๐ก/2 โฆ ๐ โ๐๐ป๐โ1๐ฟ๐ก/2 ๐ โ๐๐ป๐ ๐ฟ๐ก/2 ๐ โ๐๐ป๐ ๐ฟ๐ก/2 ๐ โ๐๐ป๐โ1๐ฟ๐ก/2 โฆ ๐ โ๐๐ป1๐ฟ๐ก/2
= ๐ โ๐๐ป๐ฟ๐ก + ๐ ๐ ๐ป ๐ฟ๐ก 3
๏ฎ
If we divide long time ๐ก into ๐ intervals, then
๐
๐ โ๐๐ป๐ก = ๐ โ๐๐ป๐ก/๐
๐
= ๐ โ๐๐ป1 ๐ก/2๐ โฆ ๐ โ๐๐ป๐ ๐ก/2๐ ๐ โ๐๐ป๐ ๐ก/2๐ โฆ ๐ โ๐๐ป1๐ก/2๐ + ๐ ๐ ๐ป ๐ก/๐ 3
๐
= ๐ โ๐๐ป1 ๐ก/2๐ โฆ ๐ โ๐๐ป๐ ๐ก/2๐ ๐ โ๐๐ป๐ ๐ก/2๐ โฆ ๐ โ๐๐ป๐พ1๐ก/2๐ + ๐ ๐ ๐ป ๐ก 3 /๐ 2
๏ฎ
Then we need
๏ฎ
General product formula can give error ๐ ๐ ๐ป ๐ก/๐
๏ฎ
For time ๐ก the error is ๐ ๐ ๐ป ๐ก
๏ฎ
To bound the error as ๐ the value of ๐ scales as
๐ ๐ป ๐ก 1+1/2๐
๐โ
๐ 1/2๐
The complexity is ๐ × ๐.
๏ฎ
1.5 /
๐โ ๐ ๐ป ๐ก
2๐+1 /๐ 2๐
.
๐.
2๐+1
for time ๐ก/๐.
Higher-order simulation
2007
Berry, Ahokas,
Cleve, Sanders
๐ ๐ป ๐ก 1+1/2๐
๐โ
๐ 1/2๐
๏ฎ
๏ฎ
๏ฎ
๏ฎ
๏ฎ
The complexity is ๐ × ๐.
For Sukuki product formulae, we have an additional factor in ๐
5๐ ๐ ๐ป ๐ก 1+1/2๐
๐โ
๐ 1/2๐
The complexity then needs to be multiplied by a further factor of 5๐ .
The overall complexity scales as
๐52๐ ๐ ๐ป ๐ก 1+1/2๐
๐ 1/2๐
We can also take an optimal value of ๐ โ log ๐ ๐ป ๐ก/๐ , which gives
scaling
๐2 ๐ป ๐ก exp[2 ln 5 ln(๐ ๐ป ๐ก/๐)]
Solving linear systems
๏ฎ
Consider a large system of linear equations:
๐ด๐ = ๐
๏ฎ
First assume that the matrix ๐ด is Hermitian.
๏ฎ
It is possible to simulate Hamiltonian evolution
under ๐ด for time ๐ก: ๐ โ๐๐ด๐ก .
๏ฎ
Encode the initial state in the form
2009
๐
๐ =
๐ฆโ |โโช
โ=1
๏ฎ
The state can also be written in terms of the eigenvectors of ๐ด as
๐
๐ =
๐๐ |๐๐ โช
๐=1
๏ฎ
We can obtain the solution |๐โช if we can divide each ๐๐ by ๐๐ .
๏ฎ
Use the phase estimation technique to place the estimate of ๐๐ in
an ancillary register to obtain
๐
๐๐ |๐๐ โช|๐๐ โช
๐=1
Harrow, Hassidim
& Lloyd
Solving linear systems
๏ฎ
2009
Use the phase estimation technique to place the
estimate of ๐๐ in an ancillary register to obtain
๐
๐๐ |๐๐ โช|๐๐ โช
๐=1
๏ฎ
Append an ancilla and rotate it according to the
value of ๐๐ to obtain
๐
๐๐ |๐๐ โช|๐๐ โช
๐=1
๏ฎ
Invert the phase estimation technique to remove the estimate of
๐๐ from the ancillary register, giving
๐
๐=1
๏ฎ
1
1
0 + 1 โ 2 |1โช
๐๐
๐๐
1
1
๐๐ |๐๐ โช
0 + 1 โ 2 |1โช
๐๐
๐๐
Use amplitude amplification to amplify the |0โช component on the
ancilla, giving a state proportional to
๐
๐ โ
๐=1
๐๐
|๐ โช =
๐๐ ๐
๐
๐ฅโ |โโช
โ=1
Harrow, Hassidim
& Lloyd
Solving linear systems
๏ฎ
What about non-Hermitian ๐ด?
๏ฎ
Construct a blockwise matrix
0 ๐ด
๐ดโฒ = โ
๐ด
0
๏ฎ
The inverse of ๐ดโฒ is then
๐ดโฒ โ1 = 0
๐ดโ1
๏ฎ
๏ฎ
This means that
0
๐ดโ1
โ1
๐ดโ
0
๐ดโ
0
โ1
๐
0
=
0
๐
In terms of the state
|0โช|๐โช โฆ |1โช|๐โช
2009
Harrow, Hassidim
& Lloyd
Solving linear systems
2009
Complexity Analysis
๏ฎ
We need to examine:
1.
The complexity of simulating the Hamiltonian to
estimate the phase.
2.
The accuracy needed for the phase estimate.
3.
The possibility of 1/๐๐ being greater than 1.
๏ฎ
The complexity of simulating the Hamiltonian for
time ๐ก is approximately โ ๐ด ๐ก = |๐max |๐ก.
๏ฎ
To obtain accuracy ๐ฟ in the estimate of ๐, the
Hamiltonian needs to be simulated for time โ 1/๐ฟ.
๏ฎ
We actually need to multiply the state coefficients
by ๐min /๐๐ , to give
๐
๐=1
๏ฎ
|๐min |
๐๐ |๐๐ โช
๐๐
To obtain accuracy ๐ in ๐min /๐๐ , we need
accuracy ๐๐2๐ / ๐min in the estimate of ๐.
Harrow, Hassidim
& Lloyd
Final complexity is
๐
2
|๐max |
โผ ,
๐
: =
๐
|๐min |
2010
Differential equations
๏ฎ
๏ฎ
Berry
Discretise the differential equation, then encode as a linear system.
Simplest discretisation: Euler method.
dx
๏ฝ Ax ๏ซ b
dt
sets initial condition
x j ๏ซ1 ๏ญ x j
๏
I
0
0
๏ฉ
๏ช ๏ญ( I ๏ซ Ah)
I
0
๏ช
0
๏ญ( I ๏ซ Ah) I
๏ช
๏ช
0
0
๏ญI
๏ช
๏ช๏ซ
0
0
0
sets x to be constant
h
0
0
0
I
๏ญI
๏ฝ Ax j ๏ซ b
0 ๏น ๏ฉ x 0 ๏น ๏ฉ xin ๏น
0 ๏บ ๏ช x1 ๏บ ๏ช bh ๏บ
๏บ๏ช ๏บ ๏ช ๏บ
0 ๏บ ๏ช x 2 ๏บ ๏ฝ ๏ช bh ๏บ
๏บ๏ช ๏บ ๏ช ๏บ
0 ๏บ ๏ช x3 ๏บ ๏ช 0 ๏บ
I ๏บ๏ป ๏ช๏ซ x 4 ๏บ๏ป ๏ช๏ซ 0 ๏บ๏ป
Quantum walks
๏ฎ
๏ฎ
๏ฎ
The quantum walk has position
and coin values
|๐ฅ, ๐โช
It then alternates coin and step
operators, e.g.
๐ถ ๐ฅ, ±1 = ๐ฅ, โ1 ± ๐ฅ, 1 / 2
๐ ๐ฅ, ๐ = |๐ฅ + ๐, ๐โช
The position can progress
linearly in the number of steps.
๏ฎ
A classical walk has a position which is an
integer, ๐ฅ, which jumps either to the left or the
right at each step.
๏ฎ
The resulting distribution is a binomial
distribution, or a normal distribution as the
limit.
Quantum walk on a graph
๏ฎ
The walk position is any node on
the graph.
๏ฎ
Describe the generator matrix ๐พ by
๐พ,
๐ โ ๐โฒ , ๐๐โฒ โ ๐บ
0,
๐พ๐๐โฒ =
๐ โ ๐โฒ , ๐๐โฒ โ ๐บ
โ๐ ๐ ๐พ,
๐ = ๐โฒ
๏ฎ
The quantity ๐(๐) is the number of
edges incident on vertex ๐.
๏ฎ
๏ฎ
An edge between ๐ and ๐ โฒ is
denoted ๐๐โฒ .
The probability distribution for a
continuous walk has the differential
equation
๐๐๐ ๐ก
=
๐พ๐๐โฒ ๐๐โฒ (๐ก)
๐๐ก
โฒ
๐
1998
Quantum walk on a graph
๐๐๐ ๐ก
=
๐๐ก
๏ฎ
Farhi
๐พ๐๐โฒ ๐๐โฒ (๐ก)
๐โฒ
Quantum mechanically we have
๐
๐
๐ ๐ก = ๐ป|๐ ๐ก โช
๐๐ก
๐
๐ โฉ๐ ๐ ๐ก =
๐ ๐ป ๐โฒ โฉ๐โฒ|๐ ๐ก โช
๐๐ก
โฒ
๐
๏ฎ
The natural quantum analogue is
๐ ๐ป ๐โฒ = ๐พ๐๐โฒ
๏ฎ
We take
๐๐ป
๏ฎ
๐โฒ
๐พ,
= 0,
๐ โ ๐โฒ , ๐๐โฒ โ ๐บ
otherwise.
Probability is conserved because ๐ป
is Hermitian.
Quantum walk on a graph
๏ฎ
๏ฎ
๏ฎ
entrance
Childs, Farhi,
Gutmann
The goal is to traverse the graph
from entrance to exit.
Classically the random walk will
take exponential time.
For the quantum walk, define a
superposition state
1
col ๐ =
|๐โช
๐๐ ๐โcolumn ๐
exit
๐๐ =
๏ฎ
2002
2๐
22๐+1โ๐
0โค๐โค๐
๐ + 1 โค ๐ โค 2๐ + 1
On these states the matrix
elements of the Hamiltonian are
col ๐ ๐ป col ๐ ± 1 = 2๐พ
Quantum walk on a graph
entrance
2003
Childs, Cleve, Deotto,
Farhi, Gutmann,
Spielman
๏ฎ
Add random connections
between the two trees.
๏ฎ
All vertices (except entrance
and exit) have degree 3.
๏ฎ
Again using column states, the
matrix elements of the
Hamiltonian are
exit
col ๐ ๐ป col ๐ ± 1
=
2๐พ
2๐พ
๐โ ๐
๐=๐
๏ฎ
This is a line with a defect.
๏ฎ
There are reflections off the
defect, but the quantum walk
still reaches the exit efficiently.
2007
NAND tree quantum walk
Farhi, Goldstone,
Gutmann
๏ฎ
In a game tree I alternate making moves with
an opponent.
๏ฎ
In this example, if I move first then I can
always direct the ant to the sugar cube.
๏ฎ
What is the complexity of doing this in
general? Do we need to query all the leaves?
AND
OR
AND
๐ฅ1
OR
AND
AND
๐ฅ2
๐ฅ3
๐ฅ4
๐ฅ5
AND
๐ฅ6
๐ฅ7
๐ฅ8
2007
NAND tree quantum walk
OR
OR
AND
๐ฅ1
NOT
AND
๐ฅ2
๐ฅ3
NOT
AND
๐ฅ4
๐ฅ1
NAND
NAND
๐ฅ1
Farhi, Goldstone,
Gutmann
NAND
๐ฅ2
๐ฅ3
๐ฅ4
NOT
NOT
AND
๐ฅ2
๐ฅ3
๐ฅ4
NAND tree quantum walk
2007
Farhi, Goldstone,
Gutmann
wave
๏ฎ
The Hamiltonian is a sum of an oracle Hamiltonian, representing the
connections, and a fixed driving Hamiltonian, which is the remainder
of the tree.
๐ป = ๐ป๐ + ๐ป๐ท
๏ฎ
Prepare a travelling wave packet on the left.
๏ฎ
If the answer to the NAND tree problem is 1, then after a fixed time
the wave packet will be found on the right.
๏ฎ
The reflection depends on the solution of the NAND tree problem.
Simulating quantum walks
๏ฎ
A more realistic scenario is that we have
an oracle that provides the structure of the
graph; i.e., a query to a node returns all
the nodes that are connected.
๏ฎ
The quantum oracle is queried with a
node number ๐ฅ and a neighbour number ๐.
๏ฎ
It returns a result via the quantum
operation
๐๐ ๐ฅ, ๐ |0โช = ๐ฅ, ๐ |๐ฆโช
๏ฎ
wave
Here ๐ฆ is the ๐โth neighbour of ๐ฅ.
|๐ฅ, ๐โช
๐๐
|0โช
connected nodes
query node
|๐ฅ, ๐โช
|๐ฆโช
Decomposing the Hamiltonian
๏ฎ
๏ฎ
๏ฎ
๏ฎ
0
0
1
The rows and columns correspond to
0
node numbers.
๐ป=
0
The ones indicate connections
1
between nodes.
โฎ
The oracle gives us the position of
0
In the matrix picture, we have a
sparse matrix.
the ๐โth nonzero element in column ๐ฅ.
0
1
0
0
0
1
โฎ
0
1
0
0
0
0
0
โฎ
1
0
0
0
1
1
0
โฎ
0
0
0
0
1
1
0
โฎ
0
1
1
0
0
0
0
โฎ
0
2003
Aharonov,
Ta-Shma
โฏ
โฏ
โฏ
โฏ
โฏ
โฏ
โฑ
โฏ
0
0
1
0
0
0
โฎ
1
Decomposing the Hamiltonian
๏ฎ
๏ฎ
๏ฎ
๏ฎ
0
0
1
The rows and columns correspond to
0
node numbers.
๐ป=
0
The ones indicate connections
1
between nodes.
โฎ
The oracle gives us the position of
0
In the matrix picture, we have a
sparse matrix.
the ๐โth nonzero element in column ๐ฅ.
๏ฎ
We want to be able to separate the
Hamiltonian into 1-sparse parts.
๏ฎ
This is equivalent to a graph
colouring โ the graph edges are
coloured such that each node has
unique colours.
0
1
0
0
0
1
โฎ
0
1
0
0
0
0
0
โฎ
1
0
0
0
1
1
0
โฎ
0
0
0
0
1
1
0
โฎ
0
1
1
0
0
0
0
โฎ
0
2003
Aharonov,
Ta-Shma
โฏ
โฏ
โฏ
โฏ
โฏ
โฏ
โฑ
โฏ
0
0
1
0
0
0
โฎ
1
2007
Graph colouring
๏ฎ
๏ฎ
๏ฎ
๏ฎ
0
0
First guess: for each node, assign
1
edges sequentially according to their
0
numbering.
๐ป=
0
This does not work because the edge
1
between nodes ๐ฅ and ๐ฆ may be edge
โฎ
1 (for example) of ๐ฅ, but edge 2 of ๐ฆ.
0
How do we do this colouring?
Second guess: for edge between ๐ฅ
and ๐ฆ, colour it according to the pair
of numbers (๐๐ฅ , ๐๐ฆ ), where it is edge
๐๐ฅ of node ๐ฅ and edge ๐๐ฆ of node ๐ฆ.
๏ฎ
We decide the order such that ๐ฅ < ๐ฆ.
๏ฎ
It is still possible to have ambiguity:
say we have ๐ฅ < ๐ฆ < ๐ง.
Berry, Ahokas,
Cleve, Sanders
0
1
0
0
0
1
โฎ
0
1
0
0
0
0
0
โฎ
1
0
0
0
1
1
0
โฎ
0
0
0
0
1
1
0
โฎ
0
1
1
0
0
0
0
โฎ
0
โฏ
โฏ
โฏ
โฏ
โฏ
โฏ
โฑ
โฏ
0
0
1
0
0
0
โฎ
1
2007
Graph colouring
๏ฎ
๏ฎ
๏ฎ
๏ฎ
Berry, Ahokas,
Cleve, Sanders
0
0
First guess: for each node, assign
1
edges sequentially according to their
0
numbering.
๐ป=
0
This does not work because the edge
1
between nodes ๐ฅ and ๐ฆ may be edge
โฎ
1 (for example) of ๐ฅ, but edge 2 of ๐ฆ.
0
How do we do this colouring?
Second guess: for edge between ๐ฅ
and ๐ฆ, colour it according to the pair
of numbers (๐๐ฅ , ๐๐ฆ ), where it is edge
๐๐ฅ of node ๐ฅ and edge ๐๐ฆ of node ๐ฆ.
๏ฎ
We decide the order such that ๐ฅ < ๐ฆ.
๏ฎ
It is still possible to have ambiguity:
say we have ๐ฅ < ๐ฆ < ๐ง.
0
1
0
0
0
1
โฎ
0
๐ฅ
3
1
0
0
0
0
0
โฎ
1
0
0
0
1
1
0
โฎ
0
0
0
0
1
1
0
โฎ
0
1
1
0
0
0
0
โฎ
0
0
0
1
0
0
0
โฎ
1
2
1
(1,2)
3
2
๐ฆ(1,2)
1
2
3
๏ฎ
โฏ
โฏ
โฏ
โฏ
โฏ
โฏ
โฑ
โฏ
๐ง
1
Use a string of nodes with equal
edge colours, and compress.
General Hamiltonian oracles
0
0
2
0
๐ป=
0
โ 2๐
โฎ
0
๏ฎ
๏ฎ
0
3
0
0
0
1/2
โฎ
0
โ
2
0
0
0
0
0
0
0
0
0
โฎ
3โ๐
0
1
0
๐ โ๐๐/7
0
โฎ
0
More generally, we can perform a
colouring on a graph with matrix
elements of arbitrary (Hermitian)
values.
Then we also require an oracle to
give us the values of the matrix
elements.
๐ ๐๐/7
2
0
โฎ
0
|๐ฅ, ๐โช
|0โช
|๐ฅ, ๐ฆโช
|0โช
2๐ โฏ
1/2 โฏ
0
0
0
0
โฎ
0
2003
Aharonov,
Ta-Shma
0
0
โฏ โ 3+๐
โฏ
0
โฏ
0
โฏ
0
โฑ
โฎ
โฏ
1/10
๐๐
๐๐ป
|๐ฅ, ๐โช
|๐ฆโช
|๐ฅ, ๐ฆโช
|๐ป๐ฅ,๐ฆ โช
Simulating 1-sparse case
0
0
0
0
๐ป=
0
โ 2๐
โฎ
0
0
3
0
0
0
0
โฎ
0
0
0
0
0
0
0
โฎ
โ 3โ๐
0
0
0
1
0
0
โฎ
0
0
0
0
0
2
0
โฎ
0
2๐
0
0
0
0
0
โฎ
0
2003
Aharonov,
Ta-Shma
โฏ
0
โฏ
0
โฏ โ 3+๐
โฏ
0
โฏ
0
โฏ
0
โฑ
โฎ
โฏ
0
๏ฎ
Assume we have a 1-sparse matrix.
๏ฎ
How can we simulate evolution under this Hamiltonian?
๏ฎ
Two cases:
1.
If the element is on the diagonal, then we have a 1D subspace.
2.
If the element is off the diagonal, then we need a 2D subspace.
Simulating 1-sparse case
๏ฎ
2003
Aharonov,
Ta-Shma
We are given a column number ๐ฅ. There are then 5 quantities
that we want to calculate:
1.
๐๐ฅ : A bit registering whether the element is on or off the
diagonal; i.e. ๐ฅ belongs to a 1D or 2D subspace.
2.
๐๐๐๐ฅ : The minimum number out of the (1D or 2D) subspace to
which ๐ฅ belongs.
3.
๐๐๐ฅ๐ฅ : The maximum number out of the subspace to which ๐ฅ
belongs.
4.
๐ด๐ฅ : The entries of ๐ป in the subspace to which ๐ฅ belongs.
5.
๐๐ฅ : The evolution under ๐ป for time ๐ก in the subspace.
๏ฎ
We have a unitary operation that maps
๐ฅ 0 โ ๐ฅ |๐๐ฅ , ๐๐๐๐ฅ , ๐๐๐ฅ๐ฅ , ๐ด๐ฅ , ๐๐ฅ โช
Simulating 1-sparse case
2003
Aharonov,
Ta-Shma
๏ฎ
We have a unitary operation that maps
๐ฅ 0 โ ๐ฅ |๐๐ฅ , ๐๐๐๐ฅ , ๐๐๐ฅ๐ฅ , ๐ด๐ฅ , ๐๐ฅ โช
๏ฎ
We consider a superposition of the two states in the subspace,
๐ = ๐ ๐๐๐๐ฅ + ๐ ๐๐๐ฅ๐ฅ
๏ฎ
Then we obtain
๐ |0โช โ |๐โช|๐๐ฅ , ๐๐๐๐ฅ , ๐๐๐ฅ๐ฅ , ๐ด๐ฅ , ๐๐ฅ โช
๏ฎ
A second operation implements the controlled operation based
on the stored approximation of the unitary operation ๐๐ฅ :
|๐โช ๐๐ฅ , ๐๐๐๐ฅ , ๐๐๐ฅ๐ฅ โ ๐๐ฅ |๐โช ๐๐ฅ , ๐๐๐๐ฅ , ๐๐๐ฅ๐ฅ
๏ฎ
This gives us
๐๐ฅ |๐โช|๐๐ฅ , ๐๐๐๐ฅ , ๐๐๐ฅ๐ฅ , ๐ด๐ฅ , ๐๐ฅ โช
๏ฎ
Inverting the first operation then yields
๐๐ฅ ๐ 0
Applications
๏ฎ
2007: Discrete query NAND algorithm โ Childs, Cleve, Jordan, Yeung
๏ฎ
2009: Solving linear systems โ Harrow, Hassidim, Lloyd
๏ฎ
2009: Implementing sparse unitaries โ Jordan, Wocjan
๏ฎ
2010: Solving linear differential equations โ Berry
๏ฎ
2013: Algorithm for scattering cross section โ Clader, Jacobs, Sprouse
Implementing unitaries
๏ฎ
2009
Jordan, Wocjan
Construct a Hamiltonian from unitary as
0
๐ป= โ
๐
๐
0
๏ฎ
Now simulate evolution under this Hamiltonian
๐ โ๐๐ป๐ก = ๐ cos ๐ก โ ๐๐ป sin ๐ก
๏ฎ
Simulating for time ๐ก = ๐/2 gives
๐ โ๐๐ป๐/2 1 ๐ = โ๐๐ป 1 ๐
= โ๐|0โช๐|๐โช
Quantum simulation via walks
๏ฎ
Three ingredients:
1. A Szegedy quantum walk
2. Coherent phase estimation
3. Controlled state preparation
๏ฎ
The quantum walk has eigenvalues and
eigenvectors related to those for Hamiltonian.
By using phase estimation, we can estimate the
eigenvalue, then implement that actually
needed.
๏ฎ
Szegedy Quantum Walk
๏ฎ
2004
Szegedy
The walk uses two reflections
2๐ถ๐ถ โ โ ๐
2๐
๐
โ โ ๐
๏ฎ
๏ฎ
The first is controlled by the first register and acts on the
second register.
Given some matrix ๐[๐, ๐], the operator ๐ถ is defined by
๐
๐๐ =
๐[๐, ๐]|๐โช
๐=1
๐
๐ถ=
๐ โฉ๐| โ |๐๐ โช
๐=1
Szegedy Quantum Walk
๏ฎ
๏ฎ
2004
Szegedy
The diffusion operator 2๐
๐
โ โ ๐ is controlled by the
second register and acts on the first. Use a similar
definition with matrix ๐[๐, ๐].
Both are controlled reflections:
๐
2๐ถ๐ถ โ โ ๐ =
๐ โฉ๐| โ (2|๐๐ โชโฉ๐๐ | โ ๐)
๐=1
๐
2๐
๐
โ โ ๐ =
(2|๐๐ โชโฉ๐๐ | โ ๐) โ ๐ โฉ๐|
๐=1
๏ฎ
The eigenvalues and eigenvectors of the step of the
quantum walk
(2๐ถ๐ถ โ โ ๐)(2๐
๐
โ โ ๐)
are related to those of a matrix formed from ๐[๐, ๐] and
๐[๐, ๐].
2012
Szegedy walk for simulation
Berry,
Childs
๏ฎ
Use symmetric system, with
โ
๐ ๐, ๐ = ๐ ๐, ๐ = ๐ป๐๐
๏ฎ
Then eigenvalues and eigenvectors are related to
those of Hamiltonian.
๏ฎ
In reality we need to modify to โlazyโ quantum walk,
with
๐๐ =
๏ฎ
๐ฟ
๐ป
๐
1
โ
๐ป๐๐
|๐โช
๐=1
๐๐ ๐ฟ
+ 1โ
|๐ + 1โช
๐ป 1
๐
๐๐ โ
Grover preparation gives
๐๐ =
1
๐
๐ ๐=1
๐
๐๐ 0 + 1 โ ๐๐ 2 |1โช
|๐ป๐๐ |
๐=1
Szegedy walk for simulation
2012
Berry,
Childs
๏ฎ
Three step process:
1. Start with state in one of the subsystems, and perform controlled state
preparation.
2. Perform steps of quantum walk to approximate Hamiltonian evolution.
3. Invert controlled state preparation, so final state is in one of the
subsystems.
๏ฎ
Step 2 can just be performed with small ๐ฟ for lazy quantum walk, or can
use phase estimation.
๏ฎ
A Hamiltonian has eigenvalues ๐, so evolution
under the Hamiltonian has eigenvalues
๐ โ๐๐๐
๐ is the step of a quantum walk, and has
eigenvalues
๐ ๐๐ = ±๐ ±๐ arcsin ๐๐ฟ
๏ฎ
The complexity is the
maximum of
๐ป ๐
๐ ๐ป max ๐
๐