CH 5 Powerpoint
Download
Report
Transcript CH 5 Powerpoint
(x, y)
(- x, y)
(- x, - y)
x cos
y sin
x cos
y sin
x cos
y sin
(x, - y)
sin
tan
cos
sin sin
tan
tan
cos
cos
Sect 5.1 Verifying Trig identities
Reciprocal
1
sin
csc
1
cos
sec
1
tan
cot
1
cot
tan
1
sec
cos
1
csc
sin
Co-function
Pythagorean
sin 90 cos
sin 2 cos 2 1
cos 90 sin
tan 90 cot
1 tan 2 sec 2
1 cot 2 csc 2
cot 90 tan
sec 90 csc
csc 90 sec
Quotient
sin
tan
cos
cos
cot
sin
Even/Odd
sin sin
cos cos
tan tan
cot cot
sec sec
csc csc
If tan
5
and is in quadrant II, find each function value.
3
(a) sec
Negative
answer.
What Trig. Identity
has tan and sec?
sec 2 1 tan 2
sec2 1 53
2
sec 1
2
sec
2
sec
25
9
34
9
(b) sin Positive
answer.
What Trig. Identity
has tan and sin?
sin y 5
tan
cos x
3
r 2 x2 y2
r x2 y2
r 32 5 34
2
34
3
y
5
5 34
sin
r
34
34
S A
T C
(c) cot Positive
answer.
What Trig. Identity
has tan and cot?
1
cot
tan
1
cot
tan
cot
1
tan
1
cot
53
1
3
3
5 1 5
5
3
Write cos(x) in terms of tan(x).
sec 2 1 tan 2
1
1 tan 2
2
cos
1
cos 2
1
1 tan 2
Secant has a relationship with both
tangent and cosine.
cos
cos
1
1 tan 2
1 tan 2
1 tan 2
Rationalize the denominator.
1 cot 2 x
Write
in terms of sin(x) and cos(x), and simplify the expression so
2
1 csc x that no quotients appear.
csc 2 x 1 cot 2 x
cot 2 x csc 2 x cot 2 x csc 2 x
1 cot 2 x
1 csc 2 x
cot 2 x 1 csc 2 x
1
2
2
csc 2 x
sin
x
1
sin
x 1
2
2
2
2
cot x
x
cos
cos 2 x
sin x cos x
sin 2 x
sec 2 x
Sect 5.2 Verifying Trig identities
Guidelines to follow.
1. Work with one side of the equation at a time. It is often
better to work on the most complicated.
2.
Look for opportunities to factor, add fractions, square
binomials or multiply a binomial by it’s conjugate to create
a monomial.
3.
Look to use fundamental identities. Look to see what trig
functions are in the answer.
4.
Convert everything to sines and cosines
5. Always try something!
Sect 5.2 Verifying Trig identities
Verify.
cot 1 csc cos sin
Work on the right side first.
Distribute the cosecant.
csc cos csc sin
1
1
cos
sin
sin
sin
cos
1
sin
cot 1 cot 1
Rewrite to sine and cosine.
Simplify the fractions.
Quotient Identity for cotangent.
Sect 5.2 Verifying Trig identities
Verify. tan x 1 cot x sec x
2
2
2
tan 2 x csc 2 x
sin x
1
2
2
cos x sin x
2
Work on the left side first.
Pythagorean Identity
1 + cot2x = csc2x
Rewrite to sine and cosine.
Simplify the fractions by canceling .
1
cos 2 x
Reciprocal Identity for secant.
sec 2 x sec 2 x
Sect 5.2 Verifying Trig identities
tan cot
sec 2 csc 2
Verify.
sin cos
tan
cot
sin cos sin cos
sin
cos
cos
sin
sin cos sin cos
Work on the left side first.
Rewrite the fraction as
subtraction of two fractions with
the same denominators.
Rewrite to sine and cosine.
Simplify the fractions by multiplying
by the reciprocals and cancel.
sin
1
cos
1
cos sin cos sin sin cos
1
1
cos 2 sin 2
sec 2 csc 2 sec 2 csc 2
Reciprocal Identity for
secant and cosecant.
Sect 5.2 Verifying Trig identities
Verify.
sec2 1
2
sin
2
sec
tan 2
sec 2
sin 2
cos 2
1
cos 2
sin 2 cos 2
2
cos
1
sin 2 sin 2
Work on the left side first.
Pythagorean Identity
1 + tan2x = sec2x
tan2x = sec2x – 1
Rewrite to sine and cosine.
Rewrite as multiplication.
Cancel and Simplify.
Sect 5.2 Verifying Trig identities
Verify.
2sec2
1
1
1 sin 1 sin
Work on the right side first. Two terms
need to be condensed to one term. Find
LCD and combine the fractions.
LCD 1 sin 1 sin
1 sin 2
1
1 sin
1
1 sin
1 sin 1 sin 1 sin 1 sin
1 sin
1 sin
2
1 sin 1 sin 2
2
1 sin 2
2
1
2
2
cos
cos 2
2 sec 2 2 sec 2
Pythagorean Identity
sin2x + cos2x = 1
cos2x = 1 – sin2x
Reciprocal of cosine.
Sect 5.2 Verifying Trig identities
2
2
2
Verify. tan tan 1 cos 1
sec sin
2
2
1
2
sin
2
cos
sin 2
cos 2
tan 2 tan 2
Work on the right side first.
Pythagorean Identities.
sin2x + cos2x = 1
cos2x – 1 = – sin2x
1 + tan2x = sec2x
Convert to cosine.
Multiply.
Sect 5.2 Verifying Trig identities
Verify.
tan cot sec csc
sin cos
cos sin
sin sin cos cos
cos sin sin cos
sin 2 cos 2
cos sin
1
cos sin
1
1
cos sin
sec csc sec csc
Work on the left side first. Try to
combine the two terms into one.
Convert to sine and cosine.
LCD cos sin
Pythagorean Identity
sin2x + cos2x = 1
Rewrite as two fractions
multiplied together.
Reciprocals.
Sect 5.2 Verifying Trig identities
Verify.
cos
sec tan
1 sin
1
sin
cos cos
Work on the right side first. Two terms
need to be condensed to one term.
Convert to sine and cosine.
Combine.
1 sin
cos
1 sin 1 sin
1 sin
cos
1 sin
2
cos 1 sin
cos 2
cos 1 sin
cos
cos
1 sin 1 sin
When working with binomials, try
multiplying by the conjugate to create
differences of squares which will
incorporate the Pythagorean Identities.
Pythagorean Identity
sin2x + cos2x = 1
cos2x = 1 – sin2x
Cancel cosine.
Sect 5.2 Verifying Trig identities
Verify.
cot 2
1 sin
1 csc
sin
csc 2 1
1 csc
csc 1csc 1
1 csc
csc 1
1
1
sin
1
sin
sin sin
1 sin 1 sin
sin
sin
Work on the left side first.
Pythagorean Identity and
convert to sine and cosine.
1 + cot2x = csc2x
cot2x = csc2x – 1
csc2x – 1 is Diff. of Squares.
Factor.
Cancel (csc x + 1)
Convert to sine.
Combine to one term.
cosA B, sin A B
Sect 5.3 Sum and Difference Formulas
cos B, sin B
A
cos A, sin A
A– B
Using Distance Formula
A– B
x2 x1 2 y2 y1 2
(1,0)
B
Dist. from (cos(A-B), sin(A-B)) to (1,0) = Dist. from (cosA, sinA) to (cosB,sinB)
cos A B 12 sin A B 02
cos A cos B2 sin A sin B2
F.O.I.L.
F.O.I.L.
F.O.I.L.
cos A B 2 cos A B 1 sin A B cos A 2 cos A cos B cos B sin 2 A 2 sin A sin B sin 2 B
2
Pythagorean Identity
Subtract by 2.
2
Pythagorean Identity
Pythagorean Identity
1 2 cos A B 1 1 2 cos Acos B 1 2 sin Asin B
2 2 cos A B 2 2 cos A cos B 2 sin Asin B
– 2
Divide by –2.
2
2
– 2
2 cos A B 2 cos A cos B 2 sin Asin B
2
2
2
cos A B cos A cos B sin A sin B
The Cosine of the Difference of Two Angles
The Cosine of the Difference of Two Angles
cos A B cos A cos B sin A sin B
Substitute (-B) for B in the formula to make the
Cosine of the Sum of Two Angle.
cos A B cos A cos B sin A sin B
cos (– B) = cos (B)
The Cosine of the Sum of Two Angles
sin (– B) = – sin (B)
cos A B cos A cos B sin A sin B
To make the Sine of the Sum & Difference of Two Angles
we will need the Cofunction Identities for Sine and Cosine.
sin cos90
cos sin 90
Start with A B .
sin A B cos90 A B cos90 A B cos90 A B
cos A B cos A cos B sin A sin B
cos90 A B cos90 Acos B sin 90 Asin B
sin A B sin Acos B cos Asin B
Substitute (-B) for B in the formula to make the Sine of the Sum of Two Angle.
sin A B sin A cos B cos Asin B
cos (– B) = cos (B)
sin (– B) = – sin (B)
sin A B sin A cos B cos Asin B
To make the Tangent of the Sum & Difference of Two Angles
we will need the Quotient Identities for Tangent.
sin A B sin A cos B cos A sin B
cos (A)
cos (B)
tan A B
cos A B cos A cos B sin A sin B
This is what
we need
divide by
cos (A) cos (B) all the
factors.
Tricky manipulation: We want this fraction to have tangents in the formula.
Need to divide by the same factor in both the top and bottom to make tangents.
Start with where we need to divide by cosine.
sin A cos B cos A sin B
tan A tan B
cos
A
cos
B
cos
A
cos
B
tan A B
cos A cos B sin A sin B
1 tan A tan B
cos A cos B cos A cos B
tan A tan B
tan A B
1 tan A tan B
sin A B sin A cos B cos A sin B
tan A B
cos A B cos A cos B sin A sin B
This is what
we need
divide by
cos (A) cos (B) all the
factors.
sin A cos B cos A sin B
cos A cos B cos A cos B tan A tan B
cos A cos B sin A sin B
1 tan A tan B
cos A cos B cos A cos B
tan A tan B
tan A B
1 tan A tan B
7
Find the exact value of cos
12
.
cos105 cos60 45
cos A B cos A cos B sin A sin B
7 7180
715 105
12
12
Use the special right triangle
angles, 30o, 45o, and 60o. We
may need to use multiples of
these angles.
cos60 45 cos60cos45 sin 60sin 45
2
1
45
1
1 2
3 2
2 2
2 2
2
6
2 6
4
4
4
1
60
2
30
3
5
.
Find the exact value of cos
3 4
2
1
60
2
3
45
5 5180
560 300
3
3
4
1
1
30
cos A B cos A cos B sin A sin B
45
Use the special right triangle
angles, 30o, 45o, and 60o. We
may need to use multiples of
these angles.
cos300 45 cos300cos45 sin 300sin 45
3 2
1 2
2 2 2 2
2
6
2 6
4
4
4
Suppose that sin for a Q2 angle and sin for a
13
5
Q1 angle .
Find the exact value of each of the following.
A. cos
B. cos
C. cos
D. cos
12
3
cos cos cos sin sin
12
13
5
4
5
cos
3
5
13
cos
4
5
5 4 12 3
13 5 13 5
20 36 56
65 65 65
cos cos cos sin sin
5 4 12 3
13 5 13 5
20 36 16
65 65 65
Find the exact value of sin 75 .
sin 75 sin 30 45
sin A B sin A cos B cos Asin B
Use the special right triangle
angles, 30o, 45o, and 60o. We
may need to use multiples of
these angles.
sin 30 45 sin 30cos45 cos30sin 45
2
1
45
1
1 2
3 2
2 2
2 2
2
6
2 6
4
4
4
1
60
2
30
3
Find the exact value of
60
2
1
30
3
2
1
7
tan
.
12
7 7180
715 105
12
12
150 45 105
45
1
tan A tan B
tan A B
1 tan A tan B
Use the special right triangle
angles, 30o, 45o, and 60o. We
may need to use multiples of
these angles.
1
1
1
1
tan 150 tan 45
3
3
tan 150 45
1 tan 150 tan 45
1
1
1
1
1
3
3
1
3
1
3
3
3
1 3 1 1 3
3
1 3
3 1
3 1 1 1 3
3 1
1 3
3
3
3
Find the exact value of
2 30
60
1
3
2
7
tan
.
12
45
7 7180
715 105
12
12
60 45 105
Use the special right triangle
angles, 30o, 45o, and 60o. We
may need to use multiples of
these angles.
1
1
tan A tan B
tan A B
1 tan A tan B
tan 60 tan 45
tan 60 45
1 tan 60 tan 45
Another approach.
3 1
1
3 1
1 3
1 3
Find the exact value of sin 40cos160 cos40sin 160.
sin A B sin A cos B cos Asin B
sin 40 160 sin 120
1
60
120
3
30
2
3
2
Sect 5.5 Dble Angle, Power Reducing, and Half Angle Formulas
Double Angle Formulas: Revise the Sum of Sin, Cos, & Tan Formulas
Substitute A in for B.
sin A B sin A cos B cos Asin B
sin A A sin A cos A cos Asin A => sin
cos A B cos A cos B sin A sin B
cos A A cos A cos A sin A sin A
cos2 A 1 sin 2 A sin 2 A
2 A 2 sin A cos A
cos2 A cos 2 A sin 2 A
cos2 A 1 2 sin 2 A
cos2 A 2 cos 2 A 1
cos2 A cos 2 A 1 cos 2 A
tan A tan B
tan A B
1 tan A tan B
tan A tan A
tan A A
1 tan A tan A
2 tan A
tan 2 A
1 tan 2 A
Find sin 2 ,cos 2 , tan 2
5
given cos
and
13
120
12 5
2
sin 2 2 sin cos
13
169
13
119
5 12
cos2 cos 2 sin 2
169
13 13
12
2
2 tan
5
120
tan 2
2
119
1 tan 2
12
1
5
2
2
Quadrant 4.
3
2 .
2
y 132 52 12
12
sin
13
tan
12
5
5
13
12
Quadrant 2.
Find the values of the six trigonometric functions of if cos2 and 90 180.
cos2 cos 2 sin 2
Choose one of the
double angle identities
to find a value for sine
or cosine.
cos2 1 2 sin 2
10
1
cos2 2 cos 2 1
cos2 1 2 sin
Substitute in 4/5.
4
2
1 2 sin
5
Subtract by 1.
2
1
2 sin 2
5
1
sin 2
10
1
sin
10
sin
4
5
1
10
10 10
2
10 12 3
SOH-CAH-TOA
cos
3 3 10
10
10
tan
1
3
Divide by -2.
cot 3
Square root both sides,
but the answer will be
positive, since we are Q2.
sec
10
3
csc 10
Verify. cot sin 2 1 cos2
cos
sin 2
sin
cos
2 sin cos
sin
2 cos 2
1 cos2 1 cos2
Work on the left side first.
Convert to sine and cosine
with Quotient Identity.
Double angle identity.
2sin(x) cos(x) = sin(2x)
Cancel
Rewrite the double angle formula.
2cos2x – 1 = cos(2x)
2cos2x = 1 + cos(2x)
sin 2 A 2 sin A cos A
cos sin cos2
2
2
cos 2 7 x sin 2 7 x cos2 7 x
cos14 x
1
2 sin 15 cos15
2
1
sin 2 15
2
1
1 1 1
sin 30
2
2 2 4
Find an identity for cos3 cos 2
cos A B cos A cos B sin A sin B
Substitute Dble angle Identity.
cos 2 cos ( cos2) sin ( sin 2 )
cos 2 cos (2 cos 2 1) sin (2 sin cos )
cos 2 2cos3 cos 2sin 2 cos
Pythagorean Identity,
rewrite with all cosines.
cos 2 2 cos3 cos 2 1 cos 2 cos
cos 2 2 cos3 cos 2 cos 1 cos 2
Distribute
cos 2 2cos3 cos 2cos 2cos3
4 cos3 3cos
cos 3 4 cos3 3cos
Product to Sum & Sum to Product Formulas
How to create the Product to Sum Formulas. Add and
subtract Sum and Difference formulas for Sine and Cosine.
cos A cos B sin A sin B cos A B
cos A cos B sin A sin B cos A B
2 cos A cos B cos A B cos A B
cos A cos B
1
cos A B cos A B
2
sin A cos B cos Asin B sin A B
sin A cos B cos Asin B sin A B
2 sin A cos B sin A B sin A B
1
sin A cos B sin A B sin A B
2
cos A cos B sin A sin B cos A B
cos A cos B sin A sin B cos A B
2 sin A sin B cos A B cos A B
sin A sin B
1
cos A B cos A B
2
sin A cos B cos Asin B sin A B
sin A cos B cos Asin B sin A B
2 cos A sin B sin A B sin A B
1
cos A sin B sin A B sin A B
2
Product to Sum Formulas
cos A cos B 12 cos A B cos A B sin A cos B 12 sin A B sin A B
sin A sin B 12 cos A B cos A B cos A sin B 12 sin A B sin A B
Sum to Product Formulas
cos A cos B 12 cos A B cos A B
2 cos A cos B cos A B cos A B
x y
Let A
2
The reason we choose these two fractions
for A and B is because we need two values
that add up to x and two values that
subtract to be y.
x y
and B
2
x y x y
x y x y
x y x y
2 cos
cos
cos
cos
2 2
2 2
2 2
x y x y
2 cos
cos
cos y cos x
2 2
A B A B
cos A cos B 2 cos
cos
2 2
Product to Sum Formulas
cos A cos B 12 cos A B cos A B sin A cos B 12 sin A B sin A B
sin A sin B 12 cos A B cos A B cos A sin B 12 sin A B sin A B
Sum to Product Formulas
A B A B
cos A cos B 2 cos
cos
2
2
A B A B
sin A sin B 2 sin
cos
2 2
A B A B
sin A sin B 2 sin
cos
2
2
A B A B
cos A cos B 2 sin
sin
2
2
Rewrite sin 6 x cos 2 x as a sum or difference of two functions
sin A cos B 12 sin A B sin A B
sin 6 x 2 x sin 6 x 2 x
12 sin 8x sin 4 x
sin 6 x cos2 x
1
2
Rewrite cos 4x cos 3x using sums to product identity.
A B A B
cos A cos B 2 sin
sin
2 2
4 x 3x 4 x 3x
cos4 x cos3x 2 sin
sin
2
2
7x x
2 sin sin
2 2
Half Angle Formulas
cos 2 A 1 2sin 2 A
cos 2 A 2cos2 A 1
2sin 2 A 1 cos 2 A
1 cos 2 A
cos A
2
1 cos 2 A
sin A
2
2
Let A
2
1 cos
sin
2
2
2
sin 2
tan
2 cos 2
tan
2
1 cos 2 A
cos A
2
tan
Let A
2
2
2
cos
2
1 cos
2
1 cos
2
1 cos
2
1 cos
2
1 cos
2
1 cos
tan
2
1 cos
The + symbol in each formula DOES NOT mean there are 2 answers,
instead it indicates that you must determine the sign of the trigonometric
functions based on which quadrant the half angle falls in.
1 cos
tan
2
1 cos
1 cos 1 cos
1 cos 1 cos
1 cos 2 1 cos 2
1 cos 2
sin 2
1 cos
tan
2
sin
1 cos
tan
2
1 cos
1 cos 1 cos
1 cos 1 cos
1 cos
2
1 cos 2
sin 2
1 cos 2
sin
tan
2 1 cos
Find the exact value for cos112.5.
1 cos
225
cos
cos112.5 cos
2
2
2
S
A
T
C
2
2
2
1
2
225
1 cos225
2
cos
2 2
2
2
2
2
2
2 2
2 2
4
2
1 cos 2
sin 2
1 1 2 sin 2
2 sin cos
Verify the identity. tan
2 sin 2
2 sin cos
tan
sin
cos