KS3: Straight Lines

Download Report

Transcript KS3: Straight Lines

C4 Chapters 6/7: Trigonometry
Dr J Frost ([email protected])
www.drfrostmaths.com
Last modified: 20th September 2015
Recap
These are all the things you’re expected to know from C2:
sin π‘₯
1
A
?π‘₯
tan π‘₯ = ?
sin π‘₯ = sin πœ‹ βˆ’
cos π‘₯
2
cos π‘₯ = cos 2πœ‹ ?βˆ’ π‘₯
3
𝑠𝑖𝑛/π‘π‘œπ‘  repeat every 2πœ‹?
4
π‘‘π‘Žπ‘› repeats every πœ‹ ?
5
πœ‹
?π‘₯
sin π‘₯ = cos
βˆ’
2
B
sin2 π‘₯ +
? cos 2 π‘₯ = 1
Bro Tip: Many student’s lack of knowledge of this
one cost them dearly in June 2013’s C3 exam.
A new member of the trig family…
cos π‘₯
Original and best. Like the
β€˜Classic Cola’ of trig functions.
2
cos π‘₯ = cos π‘₯
cos
βˆ’1
2
π‘₯ π‘œπ‘Ÿ arccos(π‘₯)
𝟏
𝐬𝐞𝐜 𝒙 =
𝐜𝐨𝐬 𝒙
The latter form is particularly useful
for differentiation (see Chp8)
Be careful: the -1 here doesn’t
mean a power of -1 UNLIKE
cos 2 π‘₯ above. This is an
unfortunate historical accident.
We have a way of representing
the reciprocal of the trig
functions.
Reciprocal Trigonometric Functions
!
1
sec π‘₯ =
cos π‘₯
Short for β€œsecant”
Pronounced β€œsehk” in shortened
form or β€œsea-Kant” in full.
1
cosec π‘₯ =
sin π‘₯
Short for β€œcosecant”
Written as csc π‘₯ everywhere except
in A Level textbooks/exams.
1
cos π‘₯
co𝑑 π‘₯ =
π‘œπ‘Ÿ
tan π‘₯
sin π‘₯
Short for β€œcotangent”
In shortened form, rhymes with β€œpot”.
Bro Tip: To remember these, look
at the 3rd letter: 𝑠𝑒𝑐’s 3rd is β€˜c’ so
it’s 1 over cos.
Where do they come from?
You might have always wondered why β€œco-sine” is so named. And isn’t a β€œsecant” a line
or something, just like a tangent is? And why of the reciprocal functions, do β€œcot” and
β€œcosec” have the β€œco” but β€œsec” doesn’t? Let’s have some help from the Greeks…
Imagine a sector
sin/tan/sec gives the ratio of each of the lines with the radius of the sector.
(If the radius is 1, we actually get the length of the lines)
A secant is a line which cuts a circle
(unlike a tangent which touches). It
comes from the Latin β€œsecare”
meaning β€œto cut”
𝒔𝒆𝒄𝒂𝒏𝒕
π’•π’‚π’π’ˆπ’†π’π’•
π’”π’Šπ’π’†
πœƒ
𝑠𝑖𝑛𝑒 comes from the Latin β€œsinus” meaning bend. It is a
translation from a Sanskrit word meaning β€˜bowstring’.
You can sort of see how the line could be half a bow.
π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘
comes from
the Latin
β€œtangere”
meaning β€œto
touch”.
Let’s introduce a bit of π‘π‘œβ€¦
Click for
Bromanimation
1: The β€˜complimentary
angle’ in a rightangled triangle is the
other non-right angle.
𝛼
𝒔𝒆𝒄𝒂𝒏𝒕
𝛼
π’•π’‚π’π’ˆπ’†π’π’•
π’”π’Šπ’π’†
πœƒ
𝛼
2: Now suppose we
repeated this diagram
using the complementary
angle…
𝒄𝒐𝒔𝒆𝒄𝒂𝒏𝒕
3: …then the
cosine/cosecant
/cotangent are
the sine, secant
and tangent
respectively
(i.e. again the
ratio with the
sector radius).
β€œcosine” is short for the
Latin β€œcomplimenti
sinus” and so on.
Sketches
If you did the L6 Summer Programme, you would have learnt a technique for sketching
reciprocal graphs: i.e. we draw the original graph, then just reciprocate each of the 𝑦-values.
It touches
here because
the reciprocal
of 1 is 1.
𝑦
π‘π‘œπ‘ π‘’π‘ isn’t
defined for
multiples of πœ‹
because we
can’t divide
by 0.
1
1
πœ‹
2
βˆ’1
Recall that
reciprocating preserves
sign. When we divide
by a small positive
number, we get a very
large positive number.
πœ‹
3
πœ‹
2
Click to Brosketch
π’š = 𝒄𝒐𝒔𝒆𝒄 𝒙
2πœ‹
π‘₯
Sketches
𝑦
Click to Brosketch
π’š = 𝒔𝒆𝒄 𝒙
1
1
πœ‹
2
βˆ’1
πœ‹
3
πœ‹
2
2πœ‹
π‘₯
Sketches
𝑦
Click to Brosketch
π’š = 𝒄𝒐𝒕 𝒙
1
πœ‹
2
πœ‹
3
πœ‹
2
2πœ‹
π‘₯
Calculations
You have a calculator in A Level exams, but won’t however in STEP, etc. It’s good
however to know how to calculate certain values yourself if needed.
See my C2 Trig slides to see how to memorise certain angles.
πœ‹
𝟏
𝟏
cot =
= =𝟏
4 𝒕𝒂𝒏 𝝅 ?𝟏
πŸ’
πœ‹
𝟏
𝟏
sec =
=
= 𝟐
4 𝐜𝐨𝐬 𝝅 ?𝟏
πŸ’
𝟐
πœ‹
𝟏
𝟐
cosec =
=
3 𝐬𝐒𝐧 𝝅 ?πŸ‘
πŸ‘
πœ‹
cot = πŸ‘?
6
5πœ‹
𝝅
cosec
= 𝐜𝐨𝐬𝐞𝐜? = 𝟐
6
πŸ”
πœ‹
cot = πŸ‘ ?
3
πœ‹
𝟐
sec =
?
6
πŸ‘
πœ‹
cosec = 𝟏 ?
2
5πœ‹
𝝅
sec
= 𝒔𝒆𝒄 ?= 𝟐
3
πŸ‘
New Identities
From C2 you knew:
sin2 π‘₯ + cos2 π‘₯ = 1
There are just two new identities you need to know:
Dividing by cos2 π‘₯:
1 + tan2 π‘₯?= sec 2 π‘₯
Dividing by sin2 π‘₯:
1 + cot 2 π‘₯ ?= cosec 2 π‘₯
Bro Tip: I used to
misremember this as
1 + sec 2 π‘₯ = tan2 π‘₯.
Then I imagined the
Queen coming back
from holiday, saying
β€œOne is tanned”, i.e. the
1 goes with the tan2 π‘₯ .
Bro Tip: I remember
this one by starting with
the above, and slapping
β€˜co’ on front of each trig
function.
Proof-ey Questions
Edexcel C3 Jan 2008
Bro Tips: For β€˜proof’
questions, usually the best
strategy is to:
a) Express most things in
terms of sin and cos
before simplifying.
b)vExpressing one side as a
single fraction.
cos 2 π‘₯ + 1 + sin π‘₯ 2
cos π‘₯ 1 + sin π‘₯
cos 2 π‘₯ + 1 + 2 sin π‘₯ + sin2 π‘₯
=
cos π‘₯ 1 + sin π‘₯
2 1 + sin π‘₯
=
cos π‘₯ 1 + sin π‘₯
2
=
= 2 sec π‘₯
cos π‘₯
?
Edexcel C3 Jan 2007
Using identities:
𝑳𝑯𝑺 = 𝟏 + 𝐭𝐚𝐧𝟐 𝒙 βˆ’ 𝟏 + 𝐜𝐨𝐭 𝟐 𝒙
?
= 𝟏 + 𝐭𝐚𝐧𝟐 𝒙 βˆ’ 𝟏 βˆ’ 𝐜𝐨𝐭 𝟐 𝒙
= 𝐭𝐚𝐧𝟐 𝒙 βˆ’ 𝐜𝐨𝐭 𝟐 𝒙
Test Your Understanding
1
sec π‘₯ βˆ’ cos π‘₯ ≑ sin π‘₯ tan π‘₯
𝟏
𝐋𝐇𝐒 =
βˆ’ 𝐜𝐨𝐬 𝒙
𝐜𝐨𝐬 𝒙
𝟏 βˆ’ 𝐜𝐨𝐬 𝟐 𝒙
=
𝐜𝐨𝐬 𝒙 ?
𝐬𝐒𝐧𝟐 𝒙
=
𝐜𝐨𝐬 𝒙
= 𝐬𝐒𝐧 𝒙 𝐭𝐚𝐧 𝒙
2
1 + cos π‘₯ cπ‘œπ‘ π‘’π‘ π‘₯ βˆ’ cot π‘₯ ≑ sin π‘₯
𝐋𝐇𝐒 = 𝐜𝐬𝐜 𝒙 βˆ’ 𝐜𝐨𝐭 𝒙 + 𝐜𝐨𝐬 𝒙 𝐜𝐬𝐜 𝒙
βˆ’ 𝐜𝐨𝐬 𝒙 𝐜𝐨𝐭 𝒙
𝟏
𝐜𝐨𝐬 𝟐 𝒙
=
βˆ’ 𝐜𝐨𝐭 𝒙 + 𝐜𝐨𝐭 𝒙 βˆ’
𝐬𝐒𝐧 𝒙
𝐬𝐒𝐧 𝒙
?
𝟐
𝟐
𝟏 βˆ’ 𝐜𝐨𝐬 𝒙 𝐬𝐒𝐧 𝒙
=
=
= 𝐬𝐒𝐧 𝒙
𝐬𝐒𝐧 𝒙
𝐬𝐒𝐧 𝒙
Example in textbook
Prove that
1+cos2 πœƒ
βˆ’
= 1βˆ’cos2 π‘₯
πœπ¨π¬πžπ’„πŸ 𝜽 + π’„π’π’•πŸ 𝜽 𝐜𝐨𝐬𝐞𝐜 𝟐 𝜽
cπ‘œπ‘ π‘’π‘ 4 πœƒ
cot 4 πœƒ
𝑳𝑯𝑺 =
= πœπ¨π¬πžπ’„πŸ 𝜽 + π’„π’π’•πŸ 𝜽
𝟏
𝐜𝐨𝐬 𝟐 𝜽
=
+
𝐬𝐒𝐧𝟐 𝜽 𝐬𝐒𝐧𝟐 𝜽 ?
𝟏 + π’„π’π’”πŸ 𝜽
=
= 𝑹𝑯𝑺
𝟏 βˆ’ π’„π’π’”πŸ 𝒙
βˆ’ π’„π’π’•πŸ 𝜽
Bro Tips: For β€˜proof’
questions, usually the best
strategy is to:
a) Express most things in
terms of sin and cos
before simplifying.
b) Expressing one side as a
single fraction.
Bro Hint: Difference
of two squares.
Exercises
Exercise 6D
1
a
c
g
j
Simplify each expression:
1
𝟏
1 + tan2 πœƒ = 𝐬𝐞𝐜 𝟐 𝜽
2
𝟐
tan2 πœƒ cosec 2 πœƒ βˆ’ 1 = 𝟏
tan πœƒ sec πœƒ
= 𝐬𝐒𝐧 𝜽
1 + tan2 πœƒ
sec 4 πœƒ βˆ’ 2 sec 2 πœƒ tan2 πœƒ + tan4 πœƒ
?
?
?
?
= 𝐬𝐞𝐜 𝟐 𝜽 βˆ’ 𝐭𝐚𝐧𝟐 𝜽
𝟐
= 𝟏𝟐 = 𝟏
6
Prove the following identities:
a
sec 4 πœƒ βˆ’ tan4 πœƒ ≑ sec 2 πœƒ + tan2 πœƒ
𝑳𝑯𝑺 = 𝐬𝐞𝐜 𝟐 𝜽 + 𝐭𝐚𝐧𝟐 𝜽 𝐬𝐞𝐜 𝟐 𝜽 βˆ’ 𝐭𝐚𝐧𝟐 𝜽
= π’”π’†π’„πŸ 𝜽 + π’•π’‚π’πŸ 𝜽
?
b
2
2
2
sec 𝐴 cot 𝐴 βˆ’ cos 𝐴 ≑ cot 2 𝐴
𝟏
𝐜𝐨𝐬𝟐 𝑨
𝑳𝑯𝑺 =
βˆ’ 𝐜𝐨𝐬𝟐 𝑨
𝐜𝐨𝐬 𝟐 𝑨 𝐬𝐒𝐧𝟐 𝑨
= π’„π’π’”π’†π’„πŸ 𝑨 βˆ’ 𝟏 = 𝐜𝐨𝐭 𝟐 𝐀
1 βˆ’ tan2 𝐴
≑ 1 βˆ’ 2 sin2 𝐴
2
1 + tan 𝐴
cosec 𝐴 sec 2 𝐴 ≑ cosec 𝐴 + tan 𝐴 sec 𝐴
?
e
d
Solve-y Questions
Edexcel C3 June 2013 (R)
Bro Tip: This is just like in
C2 if you had say a mixture
of sin πœƒ , sin2 πœƒ , cos 2 πœƒ:
you’d change the cos2 πœƒ to
1 βˆ’ sin2 πœƒ in order to get a
quadratic in terms of 𝑠𝑖𝑛.
3 sec 2 πœƒ + 3 sec πœƒ = 2 sec 2 πœƒ βˆ’ 1
sec 2 πœƒ + 3 sec πœƒ + 2 = 0 β†’ sec πœƒ + 2 sec πœƒ + 1 = 0
1
1
2πœ‹ 4πœ‹
= βˆ’2 β†’ cos πœƒ = βˆ’
β†’ πœƒ=
,
cos πœƒ
2
3 3
1
= βˆ’1
β†’ cos πœƒ = βˆ’1 β†’ πœƒ = πœ‹
cos πœƒ
?
Q
Solve, for 0 ≀ π‘₯ < 2πœ‹, the equation
2π‘π‘œπ‘ π‘’π‘ 2 π‘₯ + cot π‘₯ = 5
giving your solutions to 3sf.
2 1 + cot 2 π‘₯ + cot π‘₯ βˆ’ 5 = 0
2 + 2 cot 2 π‘₯ + cot π‘₯ βˆ’ 5 = 0
2 cot 2 π‘₯ + cot π‘₯ βˆ’ 3 = 0
2 cot π‘₯ + 3 cot π‘₯ βˆ’ 1 = 0
3
cot π‘₯ = βˆ’ π‘œπ‘Ÿ cot π‘₯ = 1
2
2
tan π‘₯ = βˆ’
π‘œπ‘Ÿ tan π‘₯ = 1
3
𝒙 = 𝟐. πŸ“πŸ“,
πŸ“. πŸ•πŸŽ,
𝟎. πŸ•πŸ–πŸ“,
?
πŸ‘. πŸ—πŸ‘
Test Your Understanding
Solve in the range 0 ≀ π‘₯ < 360° the equation:
cot 2 2π‘₯ βˆ’ 4 cosec 2π‘₯ + 5 = 0
𝟎 ≀ πŸπ’™ < πŸ•πŸπŸŽ°
𝒄𝒐𝒔𝒆𝒄 πŸπ’™ βˆ’ 𝟐 𝟐 = 𝟎
𝒄𝒐𝒔𝒆𝒄 πŸπ’™ = 𝟐
𝟏
?
𝐬𝐒𝐧 πŸπ’™ =
𝟐
πŸπ’™ = πŸ‘πŸŽ°, πŸπŸ“πŸŽ°, πŸ‘πŸ—πŸŽ°, πŸ“πŸπŸŽ°
𝒙 = πŸπŸ“°, πŸ•πŸ“°, πŸπŸ—πŸ“°, πŸπŸ“πŸ“°
Exercises
8
a
c
e
g
Solve the following equations in the given intervals:
sec 2 πœƒ = 3 tan πœƒ
0 ≀ πœƒ ≀ 360°
𝟐𝟎. πŸ—°, πŸ”πŸ—. 𝟏°, 𝟐𝟎𝟏°, πŸπŸ’πŸ—°
cosec2 πœƒ + 1 = 3 cot πœƒ
βˆ’ 180 ≀ πœƒ ≀ 180
βˆ’πŸπŸ“πŸ‘°, βˆ’πŸπŸ‘πŸ“°, πŸπŸ”. πŸ”°, πŸ’πŸ“°
1
1
3 sec πœƒ = 2 tan2 πœƒ
0 ≀ πœƒ ≀ 360
2
2
𝟏𝟐𝟎°
tan2 2πœƒ = sec 2πœƒ βˆ’ 1
0 ≀ πœƒ ≀ 180
𝟎°, πŸπŸ–πŸŽ°
?
?
?
?
Edexcel C3 June 2008
Edexcel C3 Jan 2012
?
?
?
One final type of question…
5
Given that tan πœƒ = 12, and that πœƒ is acute, determine sec πœƒ and sin πœƒ
Method 1: Using identities
𝑠𝑒𝑐 πœƒ = ± tan2 πœƒ + 1
169
13
=±
=±
144
12
The negative solution would
occur if πœƒ was obtuse.
?
12
cos πœƒ =
13
sin πœƒ = tan πœƒ cos πœƒ
5 12
5
=
×
=
12 13 13
Method 2: Forming triangle
We could have got that equation
from this triangle:
13
5
πœƒ
?
12
The 13 we obtain by Pythagoras.
Then sec πœƒ and cos πœƒ can now be
found trivially.
Bro Exam Tip: You won’t get questions like this per se
in the exam (as obviously you could use your
calculator!). But it’s useful for STEP, etc.
Inverse Trig Functions
You need to know how to sketch 𝑦 = arcsin π‘₯ , 𝑦 = arccos π‘₯, 𝑦 = arctan π‘₯.
(Yes, you could be asked in an exam!)
We have to restrict the domain
πœ‹
πœ‹
of sin π‘₯ to βˆ’ ≀ π‘₯ < before
2
2
we can find the inverse. Why?
Because only one-to-one
functions have an inverse. By
restricting the domain it is
now one-to-one.
𝑦
𝝅
𝟐
1
Click to Brosketch
π’š = π’‚π’“π’„π’”π’Šπ’ 𝒙
?
πœ‹ βˆ’πŸ
βˆ’
2
𝟏
βˆ’1
𝝅
βˆ’
𝟐
πœ‹
2
π‘₯
Inverse Trig Functions
𝑦 = arccos π‘₯
?
𝑦 = arcsin π‘₯
?
Note that this graph has asymptotes.
One Final Problem…
Edexcel C3 Jan 2007
𝑦 = arccos π‘₯
πœ‹
π‘₯ = cos 𝑦 = sin βˆ’ 𝑦
2
πœ‹
arcsin π‘₯ = βˆ’ 𝑦
2
?
arccos π‘₯ + arcsin π‘₯
πœ‹
πœ‹
=𝑦+ βˆ’π‘¦=
2
2
Fewer than 10%
of candidates got
this part right.
Onwards to Chapter 7...
Addition Formulae
Addition Formulae allow us to deal with a sum or difference of
angles.
How to memorise:
First notice that for all
of these the first thing
on the RHS is the
same as the first thing
on the LHS!
𝐬𝐒𝐧 𝑨 + 𝑩 = 𝐬𝐒𝐧 𝑨 𝐜𝐨𝐬 𝑩 + 𝐜𝐨𝐬 𝑨 𝐬𝐒𝐧 𝑩
𝐬𝐒𝐧 𝑨 βˆ’ 𝑩 = π’”π’Šπ’ 𝑨 𝒄𝒐𝒔 𝑩 βˆ’ 𝒄𝒐𝒔 𝑨 π’”π’Šπ’ 𝑩
𝐜𝐨𝐬 𝑨 + 𝑩 = 𝐜𝐨𝐬 𝑨 𝐜𝐨𝐬 𝑩 βˆ’ 𝐬𝐒𝐧 𝑨 𝐬𝐒𝐧 𝑩
𝐜𝐨𝐬 𝑨 βˆ’ 𝑩 = 𝐜𝐨𝐬 𝑨 𝐜𝐨𝐬 𝑩 + 𝐬𝐒𝐧 𝑨 𝐬𝐒𝐧 𝑩
β€’
𝐭𝐚𝐧 𝑨 + 𝐭𝐚𝐧 𝑩
𝐭𝐚𝐧 𝑨 + 𝑩 =
𝟏 βˆ’ 𝐭𝐚𝐧 𝑨 𝐭𝐚𝐧 𝑩
𝒕𝒂𝒏 𝑨 βˆ’ 𝑩 =
𝒕𝒂𝒏 𝑨 βˆ’ 𝒕𝒂𝒏 𝑩
𝟏 + 𝒕𝒂𝒏 𝑨 𝒕𝒂𝒏 𝑩
Do I need to memorise these?
They’re all technically in the
formula booklet, but you
REALLY want to eventually
memorise these.
β€’
β€’
β€’
β€’
For sin, the operator in
the middle is the same as
on the LHS.
For cos, it’s the opposite.
For tan, it’s the same in
the numerator, opposite
in the denominator.
For sin, we mix sin and
cos.
For cos, we keep the cos’s
and sin’s together.
Common Schoolboy Error
Why is sin(𝐴 + 𝐡) not just sin 𝐴 + sin(𝐡)?
Because π’”π’Šπ’ is a function, not a quantity that can be expanded
out like this. It’s a bit like how ?𝒂 + 𝒃 𝟐 β‰’ π’‚πŸ + π’ƒπŸ .
We can easily disprove it with a counterexample.
Addition Formulae
Now can you reproduce them without peeking at your notes?
How to memorise:
𝐬𝐒𝐧 𝑨 + 𝑩 ≑ 𝐬𝐒𝐧 𝑨 𝐜𝐨𝐬 𝑩 +?𝐜𝐨𝐬 𝑨 𝐬𝐒𝐧 𝑩
𝐬𝐒𝐧 𝑨 βˆ’ 𝑩 ≑ π’”π’Šπ’ 𝑨 𝒄𝒐𝒔 𝑩 βˆ’?𝒄𝒐𝒔 𝑨 π’”π’Šπ’ 𝑩
First notice that for all
of these the first thing
on the RHS is the
same as the first thing
on the LHS!
𝐜𝐨𝐬 𝑨 + 𝑩 ≑ 𝐜𝐨𝐬 𝑨 𝐜𝐨𝐬 𝑩 βˆ’?𝐬𝐒𝐧 𝑨 𝐬𝐒𝐧 𝑩
𝐜𝐨𝐬 𝑨 βˆ’ 𝑩 ≑ 𝐜𝐨𝐬 𝑨 𝐜𝐨𝐬 𝑩 +
? 𝐬𝐒𝐧 𝑨 𝐬𝐒𝐧 𝑩
𝐭𝐚𝐧 𝑨 + 𝑩 ≑
𝐭𝐚𝐧 𝑨 + 𝐭𝐚𝐧 𝑩
?𝑩
𝟏 βˆ’ 𝐭𝐚𝐧 𝑨 𝐭𝐚𝐧
𝒕𝒂𝒏 𝑨 βˆ’ 𝒕𝒂𝒏 𝑩
?
𝒕𝒂𝒏 𝑨 βˆ’ 𝑩 ≑
𝟏 + 𝒕𝒂𝒏 𝑨 𝒕𝒂𝒏 𝑩
β€’
β€’
β€’
β€’
β€’
For sin, the operator in
the middle is the same as
on the LHS.
For cos, it’s the opposite.
For tan, it’s the same in
the numerator, opposite
in the denominator.
For sin, we mix sin and
cos.
For cos, we keep the cos’s
and sin’s together.
Proof of sin 𝐴 + 𝐡 ≑ sin 𝐴 cos 𝐡 + cos 𝐴 sin 𝐡
(Not needed for exam)
π‘Œ
1
sin(𝐴 + 𝐡)
𝐴
𝐡
𝐴
𝑂
𝑋
sin 𝐴 cos 𝐡
1: Suppose we had a line
of length 1 projected an
angle of 𝐴 + 𝐡 above the
horizontal.
Then the length of π‘‹π‘Œ =
sin 𝐴 + 𝐡
It would seem sensible to
try and find this same
length in terms of 𝐴 and
𝐡 individually.
cos 𝐴 sin 𝐡
2: We can achieve this by
forming two right-angled
triangles.
3: Then we’re looking for
the combined length of
these two lines.
4: We can get the lengths
of the top triangle…
5: Which in turn allows
us to find the green and
blue lengths.
6: Hence sin 𝐴 + 𝐡 =
sin 𝐴 cos 𝐡 + cos 𝐴 sin 𝐡
β–‘
Proof of other identities
Can you think how to use our geometrically proven result
sin 𝐴 + 𝐡 = sin 𝐴 cos 𝐡 + cos 𝐴 sin 𝐡 to prove the identity for sin(𝐴 βˆ’ 𝐡)?
𝐬𝐒𝐧 𝑨 βˆ’ 𝑩 = 𝐬𝐒𝐧 𝑨 + βˆ’π‘©
?
= 𝐬𝐒𝐧 𝑨 𝐜𝐨𝐬 βˆ’π‘© + 𝐜𝐨𝐬 𝑨 𝐬𝐒𝐧 βˆ’π‘©
= 𝐬𝐒𝐧 𝑨 𝐜𝐨𝐬 𝑩 βˆ’ 𝐜𝐨𝐬?𝑨 𝐬𝐒𝐧 𝑩
What about cos(𝐴 + 𝐡)? (Hint: what links 𝑠𝑖𝑛 and π‘π‘œπ‘ ?)
𝐜𝐨𝐬 𝑨 + 𝑩 = 𝐬𝐒𝐧
𝝅
βˆ’ 𝑨+𝑩
𝟐
= 𝐬𝐒𝐧
?
𝝅
βˆ’ 𝑨 + βˆ’π‘©
𝟐
𝝅
𝝅
βˆ’ 𝑨 𝐜𝐨𝐬 βˆ’π‘© + 𝐜𝐨𝐬
𝟐
? 𝟐 βˆ’ 𝑨 𝐬𝐒𝐧 βˆ’π‘©
= 𝐜𝐨𝐬 𝑨 𝐜𝐨𝐬 𝑩 βˆ’ 𝐬𝐒𝐧 𝑨 𝐬𝐒𝐧 𝑩
= 𝐬𝐒𝐧
Proof of other identities
tan 𝐴+tan 𝐡
And finally tan 𝐴 + 𝐡 ≑ 1βˆ’tan 𝐴 tan 𝐡? (Hint: you already have expressions
for 𝑠𝑖𝑛 and π‘π‘œπ‘ !)
tan 𝐴 + 𝐡 ≑
sin 𝐴 + 𝐡
cos 𝐴 + 𝐡
sin 𝐴 cos 𝐡 + cos 𝐴 sin 𝐡
≑
cos 𝐴 cos 𝐡 βˆ’ sin 𝐴 sin 𝐡
?
We want 1 at the start of the denominator, so it makes sense to divide by 𝐜𝐨𝐬 𝑨 𝐜𝐨𝐬 𝑩,
giving us our identity.
tan 𝐴 + tan 𝐡
tan 𝐴 + 𝐡 ≑
1 βˆ’ tan 𝐴 tan 𝐡
Bro Exam Tip:
This particular proof came up in 2013
and caught many students off-guard.
Examples
Q
Using a suitable angle formulae, show that sin 15° =
6βˆ’ 2
.
4
𝐬𝐒𝐧 πŸπŸ“ = 𝐬𝐒𝐧 πŸ’πŸ“ βˆ’ πŸ‘πŸŽ = 𝐬𝐒𝐧 πŸ’πŸ“ 𝐜𝐨𝐬 πŸ‘πŸŽ βˆ’ 𝐜𝐨𝐬 πŸ’πŸ“ 𝐬𝐒𝐧 πŸ‘πŸŽ
𝟏
πŸ‘
𝟏 𝟏
=
×
βˆ’
×
𝟐
𝟐
𝟐 𝟐
?
πŸ‘βˆ’πŸ
=
𝟐 𝟐
πŸ”βˆ’ 𝟐
=
πŸ’
Q
Given that 2 sin(π‘₯ + 𝑦) = 3 cos π‘₯ βˆ’ 𝑦 express tan π‘₯ in terms of tan 𝑦.
Using your formulae:
𝟐 𝐬𝐒𝐧 𝒙 𝐜𝐨𝐬 π’š + 𝟐 𝐜𝐨𝐬 𝒙 𝐬𝐒𝐧 π’š = πŸ‘ 𝐜𝐨𝐬 𝒙 𝐜𝐨𝐬 π’š + πŸ‘ 𝐬𝐒𝐧 𝒙 𝐬𝐒𝐧 π’š
We need to get 𝐭𝐚𝐧 𝒙 and 𝐭𝐚𝐧 π’š in there. Dividing by 𝐜𝐨𝐬 𝒙 𝐜𝐨𝐬 π’š would
seem like a sensible step:
?
𝟐 𝐭𝐚𝐧 𝒙 + 𝟐 𝐭𝐚𝐧 π’š = πŸ‘ + πŸ‘ 𝐭𝐚𝐧 𝒙 𝐭𝐚𝐧 π’š
Rearranging:
πŸ‘ βˆ’ 𝟐 𝐭𝐚𝐧 π’š
𝐭𝐚𝐧 𝒙 =
𝟐 βˆ’ πŸ‘ 𝐭𝐚𝐧 π’š
Exercise 7A
7 Prove the identities:
a sin 𝐴 + 60° + sin 𝐴 βˆ’ 60° ≑ sin 𝐴
c sin π‘₯ + 𝑦 ≑ tan π‘₯ + tan 𝑦
cos π‘₯ cos 𝑦
πœ‹
πœ‹
+ 3 sin πœƒ ≑ sin πœƒ +
e cos πœƒ +
3
6
13 Solve, in the interval 0° ≀ πœƒ < 360°,
the following equations.
a 3 cos πœƒ = 2sin(πœƒ + 60°)
πŸ“πŸ. πŸ•°, πŸπŸ‘πŸ.?πŸ•°
c cos πœƒ + 25° + sin πœƒ + 65° = 1
πŸ“πŸ”. πŸ“°, πŸ‘πŸŽπŸ‘. πŸ“°
?
tan πœƒ βˆ’ 45° = 6 tan πœƒ
e
πŸπŸ“πŸ‘. πŸ’°, πŸπŸ”πŸ. πŸ”°, πŸ‘πŸ‘πŸ‘. πŸ’°, πŸ‘πŸ’πŸ. πŸ”°
?
15
Show that tan 75° = 2 + 3
𝐭𝐚𝐧 πŸ’πŸ“ + 𝐭𝐚𝐧 πŸ‘πŸŽ
𝐭𝐚𝐧 πŸ’πŸ“ + πŸ‘πŸŽ =
𝟏 βˆ’ 𝐭𝐚𝐧 πŸ’πŸ“ 𝐭𝐚𝐧 πŸ‘πŸŽ
=β‹―
?
16
Show that sec 105° = βˆ’ 2 1 + 3
𝐬𝐞𝐜 πŸ”πŸŽ + πŸ’πŸ“
𝟏
=
=β‹―
𝐜𝐨𝐬 πŸ”πŸŽ 𝐜𝐨𝐬 πŸ’πŸ“ βˆ’ 𝐬𝐒𝐧 πŸ”πŸŽ 𝐬𝐒𝐧 πŸ’πŸ“
?
17a Calculate the exact value of cos 15°.
πŸ”+ 𝟐
πŸ’
?
12d
Write
1
2
sin πœƒ + cos πœƒ as a single
trig function.
𝐬𝐒𝐧(𝜽 + πŸ’πŸ“°)
?
β€œThat” question
Edexcel June 2013 Q3
a
β€˜Expanding’ both sides:
2 cos π‘₯ cos 50 βˆ’ 2 sin π‘₯ sin 50
= sin π‘₯ cos 40 + cos π‘₯ sin 40
Since thing to prove only has 40 in it,
use cos 50 = sin 40 and sin 50 =
cos 40 .
2 cos π‘₯ sin 40 βˆ’ 2 sin π‘₯ cos 40
= sin π‘₯ cos 40 + cos π‘₯ sin 40
?
As per usual, when we want tans,
divide by cos π‘₯ cos 40:
2 tan 40 βˆ’ 2 tan π‘₯ = tan π‘₯ + tan 40
tan 40 = 3 tan π‘₯
1
tan 40 = tan π‘₯
3
b As always with β€˜hence’ questions like this, compare original statement and
statement we’re solving. π‘₯ = 2πœƒ
Thus:
1
tan 2πœƒ = tan 40
3
2πœƒ = 15.63°, 195.63°, 375.63°, 555.63°
πœƒ = 7.8°, 97.8°, 187.8°, 277.8°
?
Double Angle Formulae
! sin 2𝐴 ≑ 2 sin 𝐴 cos 𝐴
cos 2𝐴 ≑ cos2 𝐴 βˆ’ sin2 𝐴
≑ 2 cos 2 𝐴 βˆ’ 1
≑ 1 βˆ’ 2 sin2 𝐴
You will probably never
use this 1st form.
Bro Tip: The way I
remember what way
round these go is that
the cos on the RHS is
β€˜attracted’ to the cos
on the LHS, whereas
the sin is pushed away.
These are all easily derivable by just setting 𝐴 = 𝐡 in
the compound angle formulae.
Exercises
Rewrite the following as a single trigonometric function:
2 sin 40 cos 40 = 𝐬𝐒𝐧 ?
πŸ–πŸŽ
2 sin 5π‘₯ cos 5π‘₯ = 𝐬𝐒𝐧 ?
πŸπŸŽπ’™
𝟏
? 𝟐𝜽
sin π‘₯ cos π‘₯ = 𝐬𝐒𝐧
πŸπ’™
4 cos 2 πœƒ βˆ’ 2 = 𝟐 𝐜𝐨𝐬
?
𝟐
Exercise 7B
Q1a, c, e, g
Q2a, d
Q3a, c, e, g, i
Examples
More prove-y questions:
2
Prove that tan 2πœƒ ≑ cot πœƒβˆ’tan πœƒ
tan 2πœƒ ≑
2 tan πœƒ
≑
1 βˆ’ tan2 πœƒ
?
≑
2
cot πœƒ βˆ’ tan πœƒ
Prove that
1βˆ’cos 2πœƒ
sin 2πœƒ
2
1
tan πœƒ βˆ’ tan πœƒ
≑ tan πœƒ
1 βˆ’ 1 βˆ’ 2 sin2 πœƒ
2 sin2 πœƒ
≑?
≑ tan πœƒ
2 sin πœƒ cos πœƒ
2 sin πœƒ cos πœƒ
Bro Tip: Use the variant of
cos 2πœƒ that simplifies your
expression the most.
Bro Tip: Whenever you see a mixture of 2πœƒ and πœƒ,
your instinct should be to use the double angle
formulae so everything is in terms of just πœƒ.
More solve-y questions:
Solve 3 cos 2π‘₯ βˆ’ cos π‘₯ + 2 = 0 for 0 ≀
π‘₯ < 360
Clearly use cos 2π‘₯ = 2 cos2 βˆ’1 so that
everything is in terms of cos.
3 2 cos 2 π‘₯ βˆ’ 1 βˆ’ cos π‘₯ + 2 = 0
6 cos 2 π‘₯ βˆ’ 3 βˆ’ cos π‘₯ + 2 = 0
6 cos 2 π‘₯ βˆ’ cos π‘₯?βˆ’ 1 = 0
3 cos π‘₯ + 1 2 cos π‘₯ βˆ’ 1 = 0
1
1
cos π‘₯ = βˆ’ π‘œπ‘Ÿ cos π‘₯ =
3
2
π‘₯ = 60°, 109.5°, 250.5°, 300°
More Examples
Q By noting that 3𝐴 = 2𝐴 + 𝐴, determine:
sin 3𝐴 in terms of sin 𝐴
𝐬𝐒𝐧 πŸπ‘¨ + 𝑨
= 𝐬𝐒𝐧 πŸπ‘¨ 𝐜𝐨𝐬 𝑨 + 𝐜𝐨𝐬 πŸπ‘¨ 𝐬𝐒𝐧 𝑨
= 𝟐 𝐬𝐒𝐧 𝑨 𝐜𝐨𝐬 𝑨 𝐜𝐨𝐬 𝑨 + 𝟏 βˆ’ 𝟐 𝐬𝐒𝐧𝟐 𝑨 𝐬𝐒𝐧 𝑨
= 𝟐 𝐬𝐒𝐧 𝑨 𝟏 βˆ’ 𝐬𝐒𝐧𝟐 𝑨 +?𝐬𝐒𝐧 𝑨 βˆ’ 𝟐 π¬π’π§πŸ‘ 𝑨
= 𝟐 𝐬𝐒𝐧 𝑨 βˆ’ 𝟐 π¬π’π§πŸ‘ 𝑨 + 𝐬𝐒𝐧 𝑨 βˆ’ 𝟐 π¬π’π§πŸ‘ 𝑨
= πŸ‘ 𝐬𝐒𝐧 𝑨 βˆ’ πŸ’ π¬π’π§πŸ‘ 𝑨
Q cos 3𝐴 in terms of cos 𝐴
= πŸ’ 𝐜𝐨𝐬 πŸ‘ 𝑨 βˆ’?πŸ‘ 𝐜𝐨𝐬 𝑨
Q
Given that π‘₯ = 3 sin πœƒ and 𝑦 = 3 βˆ’ 4 cos 2πœƒ, express 𝑦 in terms of π‘₯.
𝑦 = 3 βˆ’ 4 1 βˆ’ 2 sin2 πœƒ
π‘₯ 2
=3βˆ’4 1βˆ’2
3
8π‘₯ 2
?
=3βˆ’4+
9
8
= π‘₯2 βˆ’ 1
9
Exercise 7C
Q1a, c, e, g, i
Q3a, c, e, g, i, k, m
Q4, Q10, Q13
Edexcel Jan 2013 Q6
?
π‘Ž sin πœƒ + 𝑏 sin πœƒ
Here’s a sketch of 𝑦 = 3 sin π‘₯ + 4 cos π‘₯.
What do you notice?
It’s a sin graph that seems to be translated on
the 𝒙-axis and stretched
?on the π’š axis. This
suggests we can represent it as 𝑹 𝐬𝐒𝐧(𝒙 + 𝜢)
π‘Ž sin πœƒ + 𝑏 sin πœƒ
Q
Put 3 sin π‘₯ + 4 cos π‘₯ in the form 𝑅 sin π‘₯ + 𝛼 giving 𝛼 in degrees to 1dp.
STEP 1: Expanding:
𝑅 sin π‘₯ + 𝛼 = 𝑅 sin π‘₯ cos
? 𝛼 + 𝑅 cos π‘₯ sin 𝛼
STEP 2: Comparing coefficients:
𝑅 cos 𝛼 = 3
𝑅 sin 𝛼 = 4
?
STEP 3: Using the fact that 𝑅2 sin2 𝛼 + 𝑅2 cos2 𝛼 = 𝑅2 :
𝑅 = 32 +?42 = 5
𝑅 sin 𝛼
STEP 4: Using the fact that 𝑅 cos 𝛼 = tan 𝛼:
4
tan 𝛼 =
?3
𝛼 = 53.1°
STEP 5: Put values back into original expression.
3 sin π‘₯ + 4 cos π‘₯ ≑ 5 sin π‘₯ + 53.1°
?
Bro Tip: I recommend you
follow this procedure every
time – I’ve tutored
students who’ve been
taught a β€˜shortcut’ (usually
skipping Step 1), and they
more often than not make
a mistake.
Test Your Understanding
Q
Put sin π‘₯ + cos π‘₯ in the form 𝑅 sin π‘₯ + 𝛼 giving 𝛼 in terms of πœ‹.
𝑅 sin π‘₯ + 𝛼 ≑ 𝑅 sin π‘₯ cos 𝛼 + 𝑅 cos π‘₯ sin 𝛼
𝑅 cos 𝛼 = 1
𝑅 sin 𝛼 = 1
𝑅 = 12 + 12 = 2
tan 𝛼 = 1
?
πœ‹
𝛼=
4
πœ‹
sin π‘₯ + cos π‘₯ ≑ 2 sin π‘₯ +
4
Q
Put sin π‘₯ βˆ’ 3 cos π‘₯ in the form 𝑅 sin π‘₯ βˆ’ 𝛼 giving 𝛼 in terms of πœ‹.
𝑅 sin π‘₯ + 𝛼 ≑ 𝑅 sin π‘₯ cos 𝛼 βˆ’ 𝑅 cos π‘₯ sin 𝛼
𝑅 cos 𝛼 = 1
𝑅 sin 𝛼 = 3
𝑅=2
πœ‹
?
tan 𝛼 = 3 π‘ π‘œ 𝛼 =
3
πœ‹
sin π‘₯ + cos π‘₯ ≑ 2 sin π‘₯ βˆ’
3
Further Examples
Put 2 cos πœƒ + 5 sin πœƒ in the form 𝑅 cos πœƒ βˆ’ 𝛼 where 0 < 𝛼 < 90°
Q Hence solve, for 0 < πœƒ < 360, the equation 2 cos πœƒ + 5 sin πœƒ = 3
2 cos πœƒ + 5 sin πœƒ ≑ 29 cos πœƒ βˆ’ 68.2°
Therefore:
29 cos πœƒ βˆ’ 68.2° = 3
3
cos πœƒ βˆ’ 68.2° =
29
πœƒ βˆ’ 68.2° = βˆ’56.1 … °, 56.1 … °
πœƒ = 12.1°, 124.3°
Bro Tip: This is an
exam favourite!
(Without using calculus), find the maximum value of 12 cos πœƒ + 5 sin πœƒ, and
Q give the smallest positive value of πœƒ at which it arises.
Use either 𝑅 sin(πœƒ + 𝛼) or 𝑅 cos(πœƒ βˆ’ 𝛼) before that way the +
sign in the middle matches up.
≑ 13 cos πœƒ βˆ’ 22.6°
?
Cos is at most 1,thus the expression has value at most 13.
This occurs when πœƒ βˆ’ 22.6 = 0 (as cos 0 = 1) thus πœƒ = 22.6
Quickfire Maxima
What is the maximum value of the expression and determine the smallest
positive value of πœƒ (in degrees) at which it occurs.
Expression
Maximum
(Smallest) 𝜽 at max
20 sin πœƒ
20
?
90°
?
5 βˆ’ 10 sin πœƒ
15
?
270°
?
3 cos πœƒ + 20°
?3
2
?7
340°
?
2
10 + 3 sin πœƒ βˆ’ 30
300°
?
Exercise 7D
Q6, Q8, Q10, Q12, Q15
Jane 2013 Q4
Part of June 2013 Q8
?
?
β€˜Factor Formulae’
You already know how to deal with the following:
sin 2π‘₯ + 2 cos 2π‘₯
i.e. a mix of sin and cos
where the input of each trig
function is the same.
2 sin 4π‘₯ cos 4π‘₯
i.e. a mix of sin and cos
where the input of each trig
function is the same.
Use 𝑅𝑠𝑖𝑛 2π‘₯ + 𝛼 = β‹―
which leads to πŸ“?𝐬𝐒𝐧 πŸπ’™ + 𝟏. πŸπŸŽπŸ•
Use double-angle formulae
?
backwards:
𝐬𝐒𝐧 πŸ–π’™ = 𝟐 𝐬𝐒𝐧 πŸ’π’™ 𝐜𝐨𝐬 πŸ’π’™
But what about…
sin π‘₯ + sin 2π‘₯
i.e. same trig function but
where each input is
different.
2 sin π‘₯ cos 3π‘₯
2 sin 3π‘₯ sin 5π‘₯
i.e. product of trig functions (either the same or
different) but again where inputs may be different.
β€˜Factor Formulae’
These are all given in the formula booklet. It’s just a case of knowing how to
use them, both forwards and backwards.
Solve sin 4πœƒ βˆ’ sin 3πœƒ = 0
Examples:
𝟐 𝒄𝒐𝒔
Show that sin 105° βˆ’ sin 15° =
1
2
Notice that both the sum and the difference
of 105 and 15 are β€˜nice’ values from a trig
perspective! Letting 𝑨 = πŸπŸŽπŸ“ and 𝑩 = πŸπŸ“:
If 𝒄𝒐𝒔
𝟐
πŸ•πœ½
𝟐
If π’”π’Šπ’
𝜽
𝟐
≀
πŸ•π…
𝟐
and 𝟎 ≀
= 𝟎,
πŸ•πœ½ 𝝅 πŸ‘π… πŸ“π… πŸ•π…
= ,
,
,
𝟐
𝟐 𝟐 𝟐 𝟐
𝝅 πŸ‘π… πŸ“π…
𝜽= ,
,
,𝝅
πŸ• πŸ• πŸ•
= 𝟎,
𝜽
=𝟎 ∴𝜽=𝟎
𝟐
?
?
π’”π’Šπ’ πŸπŸŽπŸ“° βˆ’ π’”π’Šπ’ πŸπŸ“° = 𝟐 𝐜𝐨𝐬 πŸ”πŸŽ 𝐬𝐒𝐧 πŸ’πŸ“
𝟏 𝟏
=πŸ× ×
= 𝟏/ 𝟐
𝟐
𝟐
πŸ•πœ½
𝜽
π’”π’Šπ’
=𝟎
𝟐
𝟐
If 𝟎 ≀ 𝜽 ≀ 𝝅 then 𝟎 ≀
πŸ•πœ½
0β‰€πœƒβ‰€πœ‹
𝜽
𝟐
≀
𝝅
𝟐
Proof
Note that:
sin 𝑃 + 𝑄 ≑ sin 𝑃 cos 𝑄 + cos 𝑃 sin 𝑄
sin 𝑃 βˆ’ 𝑄 ≑ sin 𝑃 cos 𝑄 βˆ’ cos 𝑃 sin 𝑄
When we add these together, we convenient get:
sin 𝑃 + 𝑄 + sin 𝑃 βˆ’?𝑄 ≑ 2 sin 𝑃 cos 𝑄
If we let 𝑃 =
𝐴+𝐡
,𝑄
2
=
π΄βˆ’π΅
:
2
𝑃 + 𝑄 ?= 𝐴
π‘ƒβˆ’π‘„ =𝐡
?
?
Thus:
𝐴+𝐡
π΄βˆ’π΅
sin 𝐴 + sin 𝐡 ≑ 2 sin
cos
2
2
?
Further Example
Prove that
sin π‘₯+2𝑦 +sin π‘₯+𝑦 +sin π‘₯
cos π‘₯+2𝑦 +cos π‘₯+𝑦 +cos π‘₯
≑ tan π‘₯ + 𝑦
Hint: combine the first and third term in the numerator and in the denominator (why?).
sin π‘₯ + 2𝑦 + sin π‘₯ ≑ 2 sin π‘₯ + 𝑦 cos 𝑦
cos π‘₯ + 2𝑦 + cos π‘₯?≑ 2 cos π‘₯ + 𝑦 cos 𝑦
Therefore:
sin π‘₯ + 2𝑦 + sin π‘₯ + 𝑦 + sin π‘₯
?
cos π‘₯ + 2𝑦 + cos π‘₯ + 𝑦 + cos π‘₯
2 sin π‘₯ + 𝑦 cos 𝑦 + sin π‘₯ + 𝑦
≑
?
2 cos π‘₯ + 𝑦 cos 𝑦 + cos π‘₯ + 𝑦
sin π‘₯ + 𝑦 2 cos 𝑦 + 1
≑
?
cos π‘₯ + 𝑦 2 cos 𝑦 + 1
sin π‘₯ + 𝑦
≑
?
cos π‘₯ + 𝑦
≑ tan π‘₯ + 𝑦
?
Exercise 7E