Glencoe Geometry
Download
Report
Transcript Glencoe Geometry
Over Lesson 11–3
Find the area of the circle.
Round to the nearest tenth.
452.4 ft2
A.
B.
C.
D.
A
B
C
D
Over Lesson 11–3
Find the area of the sector.
Round to the nearest tenth.
25.1 m2
A.
B.
C.
D.
A
B
C
D
Over Lesson 11–3
Find the area of the sector.
Round to the nearest tenth.
570.2 in2
A.
B.
C.
D.
A
B
C
D
Over Lesson 11–3
Find the area of the shaded region.
Assume that the polygon is regular.
Round to the nearest tenth.
51.4 units2
A.
B.
C.
D.
A
B
C
D
Over Lesson 11–3
Find the area of the shaded region.
Assume that the polygon is regular.
Round to the nearest tenth.
92.5 units2
A.
B.
C.
D.
A
B
C
D
Over Lesson 11–3
The area of a circle is 804.2 square centimeters.
The area of a sector of the circle is 268.1 square
centimeters. What is the measure of the central
angle that defines the sector?
120°
A.
B.
C.
D.
A
B
C
D
• Find areas of regular polygons.
• Find areas of composite figures.
• center of a regular polygon--the point that is
equidistant from each vertex
• radius of a regular polygon-- the distance
from the center to any vertex.
• apothem--A segment from the center of a
regular polygon perpendicular to a side of
the polygon.
• central angle of a regular polygon--the
angle made at the center of the polygon by
any two adjacent vertices of the polygon
• composite figure-- a figure is made from
two or more geometric figures
Identify Segments and Angles in Regular
Polygons
In the figure, pentagon
PQRST is inscribed in
Identify the center, a radius,
an apothem, and a central
angle of the polygon. Then
find the measure of a
central angle.
center: point X
radius: XR and XQ
apothem: XN
central angle: RXQ
Identify Segments and Angles in Regular
Polygons
A pentagon is a regular polygon with 5 sides. Thus,
the measure of each central angle of pentagon
PQRST is
or 72.
Answer: mRXQ = 72°
In the figure, hexagon ABCDEF is inscribed in
Find the measure of a central angle.
mDGC = 60°
A.
B.
C.
D.
A
B
C
D
Area of a Regular Polygon
FURNITURE The top of the table
shown is a regular hexagon with
a side length of 3 feet and an
apothem of 1.7 feet. What is the
area of the tabletop to the
nearest tenth?
Step 1 Since the polygon has 6 sides, the polygon
can be divided into 6 congruent isosceles
triangles, each with a base of 3 ft and a
height of 1.7 ft.
Area of a Regular Polygon
Step 2
Find the area of one triangle.
Area of a triangle
b = 3 and h = 1.7
= 2.55 ft2
Simplify.
Step 3 Multiply the area of one triangle by the total
number of triangles.
Area of a Regular Polygon
Since there are 6 triangles, the area of the table is
2.55 ● 6 or 15.3 ft2.
Answer: 15.3 ft2
UMBRELLA The top of an
umbrella shown is a regular
hexagon with a side length of
2 feet and an apothem of
1.5 feet. What is the area of
the entire umbrella to the
nearest tenth?
9 ft2
A.
B.
C.
D.
A
B
C
D
Use the Formula for the Area of a Regular
Polygon
A. Find the area of the
regular hexagon. Round to
the nearest tenth.
Step 1
Find the measure of a central angle.
A regular hexagon has 6 congruent central
angles, so
Use the Formula for the Area of a Regular
Polygon
Step 2
Find the apothem.
Apothem PS is the height of isosceles
ΔQPR. It bisects QPR, so mSPR = 30.
It also bisects QR, so SR = 2.5 meters.
ΔPSR is a 30°-60°-90° triangle with a
shorter leg that measures 2.5 meters, so
Use the Formula for the Area of a Regular
Polygon
Step 3
Use the apothem and side length to find the
area.
Area of a regular polygon
≈ 65.0 m2
Answer: about 65.0 m2
Use a calculator.
Use the Formula for the Area of a Regular
Polygon
B. Find the area of the
regular pentagon. Round
to the nearest tenth.
Step 1
A regular pentagon has 5 congruent central
angles, so
Use the Formula for the Area of a Regular
Polygon
Step 2
Apothem CD is the height of isosceles
ΔBCA. It bisects BCA, so mBCD = 36.
Use trigonometric ratios to find the side
length and apothem of the polygon.
AB = 2DB or 2(9 sin 36°). So, the
pentagon’s perimeter is 5 ● 2(9 sin 36°).
The length of the apothem CD is 9 cos 36°.
Use the Formula for the Area of a Regular
Polygon
Step 3
Area of a regular polygon
a = 9 cos 36° and
P = 10(9 sin 36°)
Use a calculator.
Answer: 192.6 cm2
A. Find the area of the regular hexagon. Round to
the nearest tenth.
146.1 m2
A.
B.
C.
D.
A
B
C
D
B. Find the area of the regular pentagon. Round to
the nearest tenth.
116.5 m2
A.
B.
C.
D.
A
B
C
D
Find the Area of a Composite Figure by Adding
POOL The dimensions of an irregularly shaped
pool are shown. What is the area of the surface of
the pool?
The figure can be separated into a rectangle with
dimensions 16 feet by 32 feet, a triangle with a base of
32 feet and a height of 15 feet, and two
semicircles with radii of 8 feet.
Find the Area of a Composite Figure by Adding
Area of composite figure
= 953.1
Answer: The area of the composite figure is
953.1 square feet to the nearest tenth.
Find the area of the figure
in square feet. Round to the
nearest tenth if necessary.
311.2 ft2
A.
B.
C.
D.
A
B
C
D
Find the Area of a Composite Figure by
Subtracting
Find the area of the shaded figure.
To find the area of the figure, subtract the area of the
smaller rectangle from the area of the larger rectangle.
The length of the larger rectangle is 25 + 100 + 25 or
150 feet. The width of the larger rectangle is 25 + 20 +
25 or 70 feet.
Find the Area of a Composite Figure by
Subtracting
area of shaded figure
= area of larger rectangle – area of smaller rectangle
Area formulas
Substitution
Simplify.
Simplify.
Answer: The area of the shaded figure is
8500 square feet.
INTERIOR DESIGN Cara wants to wallpaper one wall
of her family room. She has a fireplace in the center
of the wall. Find the area of the wall around the
fireplace.
156 ft2
A.
B.
C.
D.
A
B
C
D