Section 3.2 The Inverse Trigonometric Functions [Continued]
Download
Report
Transcript Section 3.2 The Inverse Trigonometric Functions [Continued]
Section 3.1 – The Inverse
Sine, Cosine and Tangent
Functions
Continued
5
7.85
0
7.85
5
Horizontal line test – tan x is not one-to-one
If we limit the
domain of the
tangent function to
be (–π/2, π/2) we
have a function that
is one-to-one…it
will have an
inverse.
5
2
1.57
0
2
5
1.57
The inverse tangent of x
1
y tan x
where
2
y
tan tan x x
1
1
means
tan tan x x
2
x tan y
and x
where
where
x
2
2
x
1
Characteristics of y tan x
1
Domain of y tan x is the Range of y tan x:
x
1
Range of y tan x is the Domain of y tan x:
y
2
2
x
y
y
x
2
1
y tan x
2
2
2
2
y tan x
0
2
Find the exact value of tan
1
3.
Find the value in (–π/2, π/2) whose tangent is
tan
1
3
tan 3
where
where
3
2
2
2
2
3
Section 3.2 The Inverse
Trigonometric Functions
[Continued]
Remaining Inverse Trig Functions
1
y sec x means x sec y
where x 1 ( x 1 and x 1), 0 y , y
2
1
y csc x means x csc y
where x 1 ( x 1 and x 1), 1
2
y
2
y cot x means x cot y
where x , and 0 y
,y0
1 1
Find the exact value of csc cos .
4
1 1
cos
4
where
0
1
cos
4
1
0
since cos 0
2
4
y 1 4 16
2
y
2
2
y 15
4
y
r
csc
y
4
4 15
csc
15
15
x
1
4 15
1 1
csc cos csc
4
15
1
Find the exact valu e of csc tan 1
tan 1,
1
tan 1,
4
2
2
2
2
So, we need to find
csc
4
We know
tan 1
r a b 1 1
2
2
2
r 2
2
( a, b)
y
2
2
4
1
1
x
2
r
csc tan 1 csc
2
1
4 b
1
1
Use a calculator to approximat e sec 3.
1
We have sec 3, for 0 ,
sec 3, 0 ,
2
2
But we (most likely) do not have a sec button
on our calculator, so
1
1
cos
sec 3
1
cos
3
1
1.23