4.4 Trigonmetric functions of Any Angle
Download
Report
Transcript 4.4 Trigonmetric functions of Any Angle
4.4 Trigonmetric functions of Any
Angle
Objective
• Evaluate trigonometric functions of any
angle
• Use reference angles to evaluate trig
functions
Definitions of Trigonometric
Functions of any Angle
• Let θ be an angle in standard position with (x, y)
a point on the terminal side of θ and
r x y 0
2
2
y
x
sin
cos
r
r
y
x
tan , x 0 cot y 0
x
y,
r
r
sec , x 0 csc , y 0
x
y
• The cosecant function is the reciprocal of
the sine.
• The secant function is the reciprocal of the
cosine.
• The cotangent function is the reciprocal of
the tangent function.
Example 1
• Let (-3, 4) be a point
on the terminal side of
θ. Find the sine,
cosine, and tangent of
θ.
r x2 y 2
r (3) 2 42
r 9 16
r 5
y 4
sin
r 5
x
3
cos
r
5
y
4
tan
x
3
Example 2
• Let (2, 5) be a
point on the
terminal side of θ.
Find the sine,
cosine, and
tangent of θ.
r x2 y2
r (2) 2 52
r 4 25
r 29
y
5
5
29 5 29
sin
r
29
29
29 29
x
4
4
29 4 29
r
29
29
29 29
y 5
tan
x 4
cos
Signs of the Trigonometric
Functions
Signs of the Trig Functions
A means that all trig. functions are positive.
S means that all sine and cosecant functions are positive.
T means that all tangent and cotangent functions are positive.
C means that all cosine and secant functions are positive.
Example 3
• State whether each value is positive,
negative, or zero.
• a) cos 75° positive
• b) sin 3π 0
• c) cos 5π negative
• d) sin(-3π) 0
Example 4
• Given.
4
and tan 0, find cos and csc .
5
4 y
sin , implies y = 4 and r = 5
5 r
since tan <0, and y = 4, is in the II quadrant
sin
r x2 y 2
5 x 2 42
25 x 2 16
9 x2
x 3, since is in II, x = -3
x
3
r 5
cos , csc
r
5
y 4
Example 5
• Angle θ is in
standard position
with its terminal side
in the third
quadrant. Find the
exact value of cos θ
if
1
2
1 y
sin ,implies y = -1, r = 2
2 r
sin
r x2 y 2
2 x 2 (1) 2
4 x2 1
3 x 2 , x 3,since is in III, x 3
x
3
cos
r
2
Example 6
• Angle θ is in standard
position with its
terminal side in the
fourth quadrant. Find
the exact value of sin
θ if
4
7
4 x
cos ,implies x = 4, r = 7
7 r
cos
r x2 y 2
7 42 y 2
49 16 y 2
33 y 2 , y 33,since is in IV, y 33
sin
y
33
r
7
Reference Angles
• Definition
• Let θ be an angle in standard position. Its
reference angle is the acute angle θ’
formed by the terminal side of θ and the
horizontal axis.
Reference angles
Example 7
• Finding reference angles.
a. 213
b. 1.7
c. 144
Trigonometric Values of
Common Angles
Example 8
• Use the reference angle to find sin θ,
and tan θ for each value of
a. 150 is in II so ' 180 150 30
1
3
1
3
sin 30 , cos 30
implies sin150 , cos
,
2
2
2
2
1
3
tan150 1/ 2
3/2
3
3
b. 330 is in IV so ' 360 330 30
1
3
3
sin 330 , cos 330
, tan 330
2
2
3
7
7
c.
is in III, so '
30
6
6
6
sin
7
1
7
3
7
3
, cos
, tan
6
2
6
2
6
3
cos θ,
Example 9
For 0 2 ,
• Determine the values of θ for which
1
sin , looking at the unit circle
2
5
,
6
6
• If the value of one of the trig functions of
any angle is known, a calculator can be
used to determine the angles having that
value.
Example 10
• Find values of θ, where
0
• to the nearest tenth of a degree.
a. cos .9266
Make sure calculator is in degrees
2nd cos(.9266) = 22.1
b. sin 0.6009
2nd sin(-0.6009) 36.9
c. tan .2309
2nd tan(.2309) 13
360
Example 11
0 2
• Find values of θ, where
• To the nearest hundredth of a radian.
a. tan 3.009
Make sure calculator is in radians
2nd tan(3.009) 1.25 radians
b. cot 4.69
2nd tan( 1/ 4.69) .21 radians
c. sec 8.2986
3nd cos(1/8.2986) 1.44 radians