Transcript 4.2
Precalculus Trigonometric Functions
The Unit Circle 2015
Precalculus WU 10/14
Find one positive and one negative angle
co-terminal with the given angle.
5
12
Objectives:
• Find trig function values for special angles using the
unit circle.
• Evaluate Trig functions using the unit circle.
• Use domain and period to evaluate trig functions.
• Solve application problems using the unit circle.
The six trigonometric functions of a right triangle, with an acute
angle , are defined by ratios of two sides of the triangle.
The sides of the right triangle are:
hyp
the side opposite the acute angle ,
opp
the side adjacent to the acute angle ,
θ
and the hypotenuse of the right triangle.
adj
The trigonometric functions are
sine, cosine, tangent, cotangent, secant, and cosecant.
opp
sin =
cos = adj
tan = opp
hyp
hyp
adj
csc =
hyp
opp
sec = hyp
adj
Copyright © by Houghton Mifflin Company, Inc.
All rights reserved.
cot = adj
opp
4
Trigonometric Functions
Let be an angle in standard position with (x, y), a point on
the terminal side of and r = x 2 y 2 0.
sin
y
r
cos x
r
y
y
, x0
x
cot x , y 0
y
sec r , x 0
x
csc r , y 0
y
tan
(x, y)
x
5
Example:
Determine the exact values of the six trigonometric functions
of the angle .
y
r x 2 y 2 (3) 2 62
(3, 6)
9 36 45
x
y
6 2 5
r
5
45
cos x 3 5
r
5
45
y
tan 6 2
x 3
sin
csc r 45 5
y
6
2
sec r 45 5
x
3
cot x 3 0.5
y 6
6
So, we know that trigonometric function
values are side length relationships of right
triangles.
We can easily evaluate the exact values of
trigonometric functions for special angles.
Geometry of the 30-60-90 triangle
Consider an equilateral triangle with
each side of length 2.
30○ 30○
The three sides are equal, so the
angles are equal; each is 60.
2
The perpendicular bisector
of the base bisects the
opposite angle.
60○
2
3
1
60○
2
1
Use the Pythagorean Theorem to
find the length of the altitude, 3 .
Copyright © by Houghton Mifflin Company, Inc.
All rights reserved.
8
Special right triangle relationships
2
3
2
1
45
60
1
1
Now, let’s apply it to the unit circle…
What does “unit circle” really mean?
It’s a circle with a radius of 1 unit.
What is the equation of the “unit circle”?
x y 1
2
2
0,1
2
0, 0
1,0
2 , 360
, 180
-1,0
0, -1
3
2
Let’s begin with an easy family…
4
What are the
coordinates?
2
4
1
, 180
2
2
2
2
45
2
2
3
2
Now, reflect the triangle to the second quadrant…
0, 0
2 , 360
,
2
2
What are the
coordinates?
-
2
2
,
2
2
2
3
4
4
1
2
2
1
-
2
2
2
2
2
2
2
45
, 180
2
3
2
Now, reflect the triangle to the third quadrant…
0, 0
2 , 360
,
2
2
2
-
2
,
2
2
2
3
4
4
1
2
2
-
-
2
2
, -
2
2
1
2
2
2
2
2
5
4
2
2
2
45
, 180
What are the
coordinates?
3
2
Now, reflect the triangle to the fourth quadrant…
0, 0
2 , 360
,
2
2
2
-
2
,
2
2
2
3
4
4
1
2
2
-
-
2
, -
2
2
1
7
3
2
,
2
2
2
0, 0
2 , 360
2
2
5
4
2
2
2
2
2
45
, 180
2
4
What are the
coordinates?
2
2
, -
2
2
Complete the
family…
6
.
6
1
30
3
2
,
1
2
1
2
3
2
Now, reflect the triangle to the second quadrant.
3 1
,
2 2
6
5
6
1
2
-
3
2
1
1
30
2
3
2
,
1
2
3
2
Now, reflect the triangle to the third quadrant.
3 1
,
2 2
5
6
1
2
-
What are the
coordinates?
-
3
2
, -
1
2
6
7
3
2
1
1
30
2
3
2
,
3
2
6
Now, reflect the triangle to the fourth quadrant.
1
2
3 1
,
2 2
5
6
1
2
-
-
3
2
, -
1
2
6
7
6
3
2
1
1
30
2
3
2
,
1
2
3
2
11
3
2
, -
1
2
6 What are the
coordinates?
Let’s look at another “family”
3
2
3
2
,
3
2
3
1
2
, 180
1
60
1
2
3
2
Now, reflect the triangle to the second quadrant
0, 0
2 , 360
What are the
coordinates?
-
1
2
,
3
2
2
2
3
3
1
3
2
-
1
60
1
2
2
,
3
2
3
1
2
, 180
1
2
3
2
Now, reflect the triangle to the third quadrant
0, 0
2 , 360
-
1
2
3
,
2
2
3
1
2
-
1
60
1
2
2
What are the
coordinates?
-
2
, -
2
2
,
3
2
4
3
3
1
2
, 180
3
1
3
3
1
2
3
2
Now, reflect the triangle to the fourth quadrant
0, 0
2 , 360
-
1
2
3
,
2
2
3
1
2
-
-
2
, -
2
2
,
3
2
4
3
3
1
2
, 180
3
1
3
3
1
2
1
0, 0
2 , 360
60
1
2
2
3
2
5
3
What are the
coordinates?
1
2
, -
3
2
Ordered pairs of special angles around the Unit Circle
1 3
2, 2
Since r = 1…
cos x
1
3,1
2 2
(–1, 0)
3 1
2 , 2
2
2 ,
x, y cos ,sin
90°
2
3 3 120°
5 4 135°
6 150°
2 2
2 , 2
y
sin
1
y
180°
(0, 1)
2
60° 3
1 3
2, 2
2 2
2 , 2
4
45°
30° 6
3 1
2 ,2
0° 0 x
360° 2 (1, 0)
330°
11
315°
3 1
7 210°
6
6 2 , 2
225°
7
5
240° 300°
2 4 4
5 4 2 , 2
2
2
2
3 270° 32 3
1
3
,
2
2
(0, –1)
1
3
,
2
2
24
• Important point:
Since r = 1…
sin
y
1
cos x
1
x, y cos ,sin
Because ordered pairs around the unit circle (x, y) represent
2
2
x
y
1,
sine and cosine, and the equation of the circle is
We have the following identity: cos 2 sin 2 1
What if the radius is not 1?
6
1
30
30
Trigonometric values are functions of the angle – ratios of
sides of similar triangles remain the same. So it always holds
that cos 2 sin 2 1.
Trigonometric Values
of Special Angles
1 3
2, 2
(–1, 0)
3 1
2 , 2
2
2 ,
90°
2
3 3 120°
5 4 135°
6 150°
2 2
2 , 2
3,1
2 2
y
180°
(0, 1)
2
60° 3
1 3
2, 2
2 2
2 , 2
4
45°
30° 6
3 1
2 ,2
0° 0 x
360° 2 (1, 0)
330°
11
315°
3 1
7 210°
6
6 2 , 2
225°
7
5
240° 300°
2 4 4
5 4 2 , 2
2
2
2
3 270° 32 3
1
3
,
2
2
(0, –1)
1
3
,
2
2
27
Domain
The domain of the sine and cosine function is the set of all real
numbers.
(0, 1) y
Unit Circle
(–1, 0)
(1, 0)
x
1 y 1
(0, –1)
1 x 1
Range
The point (x, y) is on the unit circle, therefore the range of the
sine and cosine function is between – 1 and 1 inclusive.
28
A function f is periodic if there is a positive real number
c such that
f (t + c) = f (t)
for all t in the domain of f. The least number c for which
f is periodic is called the period of f.
y
Unit Circle
f (t) sin t
Periodic Function
x
t = 0, 2, …
Period
29
Example:
Evaluate sin 5 using its period.
5 - 2 - 2 =
sin 5 = sin = 0
f (t) sin t
y
(–1, 0)
x
Adding 2 to each value of t in the
interval [0, 2] completes another
revolution around the unit circle.
sin(t 2 n) sin t
cos(t 2 n) cos t
30
You Try:
9
a) Evaluate sin
4
b) Evaluate cos
10
3
Can you?
Evaluate each of the following. Exact values only please.
5
tan
6
3
sec
4
Even and Odd Trig Functions
Remember:
if f(-t) = f(t) the function is even
if f(-t) = - f(t) the function is odd
The cosine and secant functions are EVEN.
cos(-t)=cos t
sec(-t)=sec t
(0,1) y
(–1, 0)
(0,–1)
The sine, cosecant, tangent, and cotangent functions are
ODD.
sin(-t)= -sin t
csc(-t)= -csc t
tan(-t)= -tan t
cot(-t)= -cot t
(1, 0)
Example:
Evaluate the six trigonometric functions at = .
sin y 0
cos x 1
y 0
tan
0
x 1
csc 1 1 is undefined.
y 0
sec 1 1 1
x 1
cot x 1 is undefined.
y 0
(0, 1) y
(–1, 0)
x
(1, 0)
(0, –1)
34
Application:
A ladder 20 feet long leans against the side of a house.
The angle of elevation of the ladder is 60 degrees.
Find the height from the top of the ladder to the ground.
Application:
An airplane flies at an altitude of 6 miles toward a point
directly over an observer. If the angle of elevation
from the observer to the plane is 45 degrees, find the
horizontal distance between the observer and the plane.
.
Homework
4.2 pg. 264
1-51 odd
Trig Races
4
cos
3
1
2
3
3
tan210
11
csc
4
2
csc7 undef.
22
sin
3
cos
3
3
2
1
2
7
sin
3
3
sin
2
4
sec
3
3
2
3
csc
4
1
7
tan
3
2
8
cot
3
2
3
3
3
HWQ 10/15
Evaluate each of the following. Exact values only please.
5
tan
6
3
sec
4
csc7
22
sin
3