Transcript 1 + cos2x
Evaluating Trigonometric Integrals
To evaluate integrals such as
∫sinmx cosnx dx and ∫secmx tannx dx
Think ∫u du
Evaluating Trigonometric Integrals
Think ∫u du
∫sin5x cos4x dx would be?
Evaluating Trigonometric Integrals
Think ∫u du
∫sin5x cosx dx would be?
u
du
sin6x + c
6
So if we have ∫sin5x cos4x dx what could be do?
So if we have ∫sin5x cos4x dx what could be do?
What about trying an identity?
sin2x + cos2x = 1
sin2x = 1 - cos2x
2
cos2x = 1 + cos2x
2
Guidelines for sine and cosine
1. If sine is odd and positive
save 1 sine and convert all others to cosine
∫sin5x cos4x dx =
∫sin x(sin2x)2 cos4x dx
∫sin x(1 - cos2x)2 cos4x dx
∫sin x(1 - 2cos2x + cos4x) cos4x dx
∫cos4x sin x - 2cos6x sin x + cos8x sin x dx
Example
∫sin5x cos4x dx =
∫sin x(sin2x)2 cos4x dx
∫sin x(1 - cos2x)2 cos4x dx
∫sin x(1 - 2cos2x + cos4x) cos4x dx
∫(cos4x sin x - 2cos6x sin x + cos8x sin x)dx
-∫cos4x -sin x dx+ ∫2cos6x -sin x dx -∫cos8x -sin x dx
-1/5 cos5x + 2/7 cos7x - 1/9 cos9x + C
Guidelines for sine and cosine
1. If sine is odd and positive save 1 sine and convert all others to cosine
2. If cosine is odd and positive save 1 cosine and convert all others to sine
3. If both are even and positive use the identities
sin2x = 1 - cos2x
2
cos2x = 1 + cos2x
2
repeatedly to convert to odd powers of cosine
Guidelines for secant & tangent
Identity
sec2x = 1 + tan2x
1. If secant is even and positive save a sec2x and convert others to tangents
2. If tangent is odd and positive save a secx tanx and convert others to secants
3. If tangent is even and positive & there are no sec x change a tan2x to sec2x
4. If secant is odd and positive & there are no tan xuse integration by parts
5. If nothing else works try converting to sin and cos
Example
∫sec43x tan33x dx =
∫(sec23x (sec23x) tan33x)dx
∫(sec23x (1 + tan23x) tan33x)dx
∫tan33x sec23x dx + ∫tan53x sec23x dx
1/3∫tan33x sec23x 3dx + 1/3∫tan53x sec23x 3dx
1/12 tan43x + 1/18 tan63x + C