Finding Exact Values For Trigonometry Functions (Then
Download
Report
Transcript Finding Exact Values For Trigonometry Functions (Then
Finding Exact Values For
Trigonometry Functions (Then
Using those Values to Evaluate
Trigonometry functions and Solve
Trigonometry Equations)
Review: Special Right Triangles
Find the exact values
of the missing side
lengths:
π60°
/3
1
The “short leg” is
half the
hypotenuse
1
30°-60°-90°
π45°
/4
2
1
π30°
/6
The “long
leg” is the
short leg
multiplied by
√3
3
2
π /°4
45
The hypotenuse is any
leg multiplied by √2
2
45°-45°-90°
OR
Isosceles Right
2
2
2
Exact Coordinates on the Unit Circle
The angles
The angles
0,1
1
that have the
from the
π90°
/2
same
special right
2π / 3
π60°
/3
120°
3π / 4
π45°
/4
reference
135°
triangles
angles as the
have exact
5π / 6
π 30°
/6
150°
angles
coordinates
from 1, 0 180°
π
0 1, 0
0°
special
-1
1
right
The x and
11π
/6
triangles
7π / 6
330°
210°
have exact
7π315°
/4
y-intercepts
5π / 4
225°
5π
/3
coordinates
4π
/3
300°
240°
obviously
3π
/2
270°
-1 0, 1
have exact
coordinates
Exact Coordinates on the Unit Circle
1
3
,
2 2
2
2
,
2
2
3 1
,
2 2
1 0,1
π/2
2π / 3
3π / 4
These
5π / 6
coordinates
tell you 1, 0 π
the exact
-1
values of
3
1
,
cosine and 2 2 7π / 6
sine for 16
5π / 4
2
2
,
angles.
4π / 3
2
2
1
3
,
2
2
1
3
,
2 2
π/3
π/4
1
1
3π
1
45°
60°
30°
1/2 2
2
2
,
2
2
3 1
,
2 2
/ 62
2
1/2
2
0
3
2 2
3
1
,
2
2
11π / 6
7π / 4
5π / 3
3π / 2
-1 0, 1
1
3
,
2
2
2
2
1, 0 They need
to be
1 memorized.
,
2
2
Exact Coordinates on the Unit Circle
1
3
,
2 2
2
2
,
2
2
1 0,1
90°
120°
3 1
,
2 2
1
3
,
2 2
135°
These
150°
coordinates
tell you 1, 0 180°
the exact
-1
values of
3
1
,
cosine and 2 2 210°
sine for 16
225°
2
2
,
angles.
240°
2
2
1
3
,
2
2
2
2
,
2
2
60°
45°
3 1
,
2 2
30°
0°
330°
315°
270°
300°
-1 0, 1
1, 0 They need
to be
1 memorized.
3
1
,
2
2
2
2
,
2
2
1
3
,
2
2
NOTE
The coordinates on that graph tell you the
exact values of cosine and sine for 16
angles. They need to be memorized for all
of the included angles.
If you do not wish to memorize the unit circle
or use special right triangles, the following
is a trick to assist in memorization.
Reference Angle
On the left are 3 reference angles that we know exact trig values
for. To find the reference angle for angles not in the 1st quadrant
(the angles at right), ignore the integer in the numerator.
4
7 11
,
,
6
6
6
3 5 7
,
,
4
4
4
2
: 30
6
3
: 45
: 60
5
4 5
,
,
3
3
3
NOTE:
Multiply the
number in
the
numerator
by the
degree to
find the
angle’s
quadrant.
Example
Find the reference angle and quadrant of the
following:
3
4
R eference Angle:
4
Or 45º
Q uadrant of A ngle: S econd Q uadrant
3 45 135
Stewart’s Table: Finding Exact Values of Trig
Functions
R.A.
0
Sin
0
2
1
6
2
Cos
0
1
1
3
2
2
2
2
2
3
1
3
2
2
4
2
1. Find the
value of the
Reference
Angle.
2
4
Tan
2
2
2
Each time the square root
number goes up by 1
1
0
Reverse the order of the
values from sine
2. Find the
angles
quadrant to
figure out the
sign (+/-).
How to Remember which Trigonometric
Function is Positive
1
Just
Sine
S
-1
Just
Tangent
A
STUDENTS
ALL
TAKE
CALCULUS
T
C
-1
All
1
Just
Cosine
Example 1
Find the exact value of the following:
Thought process
R eference Angle:
cos
3
4
4
C osine of R eference A ngle: co s 4
2
2
Q uadrant of A ngle: 3 4 5 1 3 5 S econd Q uadrant
S ign of C osine in S econd Q uadrant:
S
N egative
T
T h erefo re:
cos 34
2
2
A
C
The only thing required for a correct
answer (unless the question says explain)
Example 2
Find the exact solutions to the equation below if 0 ≤ x ≤ 2π:
Isolate the Trig
Function
2 co s x 1
cos x
Find the Reference
Angle
-1
x
1 Use the reference angle to
-1
12
x
Find the answer in
degrees first
120
or
Convert the answers to radians
find where Cosine is also
negative
180°+60°
=240°
1
x 2 .0 9 4
1
60°
60°
1
2
x co s
Are there more
answers?
120°
The answer must
be in Radians
2
3
,
4
3
x
120
x
180
2
3
x
240
180
4
3
Example 3
Find the exact value of the following:
Thought process
R eference Angle:
tan
5
3
3
T angent of R eference Angle: tan 3
3
Q uadrant of A ngle: 5 6 0 3 0 0 Fourth Q uadrant
S ign of T angent in Fourth Q uadrant:
,
,
T h erefo re:
tan 53 3
,
n eg ative
p o sitive
N eg ative
,
The only thing required for a correct
answer (unless the question says explain)