Transcript ppt
5.3 Trigonometric Functions of Any Angles.
The Unit Circle
1.
2.
3.
4.
Use the definitions of trigonometric functions of any angle.
Use the signs of the trigonometric functions.
Find reference angles.
Use reference angles to evaluate trigonometric functions.
Dr .Hayk Melikyan/ Departmen of Mathematics and CS/ [email protected]
H.Melikian/1200
1
Definitions of Trigonometric Functions of Any Angle
Let be any angle in standard position and let P = (x, y) be
a point on the terminal side of If r x 2 y 2 is the
distance from (0, 0) to (x, y), the six trigonometric functions
of are defined by the following ratios:
H.Melikian/1200
y
sin
r
r
csc , y 0
y
x
cos
r
r
sec , x 0
x
y
tan , x 0
x
x
cot , y 0
y
2
Example: Evaluating Trigonometric Functions
Let P = (1, –3) be a point on the terminal side of Find each of
the six trigonometric functions of
P = (1, –3) is a point on the terminal side of
x = 1 and y = –3
r x 2 y 2 (1)2 (3)2 1 9 10
y 3 3
sin
r
10 10
1
x
cos
r
10
H.Melikian/1200
10
3 10
10
10
1
10
10
10 10 10
3
Example: Evaluating Trigonometric Functions
(continued)
Let P = (1, –3) be a point on the terminal side of
of the six trigonometric functions of
We have found that r 10.
y 3
3
tan
x 1
r
csc 10
y
3
Find each
1
x
cot
3
y
r
10
sec
10
x
1
H.Melikian/1200
4
Example: Evaluating Trigonometric Functions
(continued)
Let P = (1, –3) be a point on the terminal side of
of the six trigonometric functions of
Find each
H.Melikian/1200
3 10
sin
10
10
csc
3
10
cos
10
sec 10
tan 3
1
cot
3
5
Example: Trigonometric Functions of Quadrantal Angles
Evaluate, if possible, the cosine function and the cosecant function at
the following quadrantal angle:
If 0 0
then the terminal side of the angle is on the positive
x-axis. Let us select the point P = (1, 0) with x = 1 and y = 0.
0 0 radians,
x 1
cos 1
r
1
r
1
csc
y
0
csc
H.Melikian/1200
is undefined.
6
Example: Trigonometric Functions of Quadrantal Angles
Evaluate, if possible, the cosine function and the cosecant function at the
following quadrantal angle:
If
90
2
then the terminal side of the angle is on the
positive y-axis. Let us select the point P = (0, 1) with x = 0 and y = 1.
90
2
radians,
x 0
cos 0
r 1
r 1
csc 1
y 1
H.Melikian/1200
7
Example: Trigonometric Functions of
Quadrantal Angles
Evaluate, if possible, the cosine function and the cosecant
function at the following quadrantal angle: 180
If 180 radians, then the terminal side of the angle is
on the positive x-axis. Let us select the point P = (–1, 0)
with x = –1 and y = 0.
x 1
cos 1
r 1
r
1
csc
y
0
csc
H.Melikian/1200
is undefined.
8
Example: Trigonometric Functions of Quadrantal Angles
Evaluate, if possible, the cosine function and the cosecant
3
function at the following quadrantal angle: 270
2
3
radians, then the terminal side of the angle
If 270
2
is on the negative y-axis. Let us select the point P = (0, –1)
with x = 0 and y = –1.
x 0
cos 0
r 1
r
csc 1 1
y 1
H.Melikian/1200
9
The Signs of the Trigonometric Functions
H.Melikian/1200
10
Example: Finding the Quadrant in Which an Angle Lies
If sin and cos 0, name the quadrant in which the
angle lies.
lies in Quadrant III.
H.Melikian/1200
11
Example: Evaluating Trigonometric Functions
Given tan 1 and cos 0, find sin and sec .
3
Because both the tangent and the cosine are negative,
lies in Quadrant II.
y
1
tan
x 3
x 3, y 1
r x 2 y 2 (3)2 (1)2 9 1 10
y
1
sin
r
10
H.Melikian/1200
10
10
10 10
10
10
r
sec
3
x 3
12
Definition of a Reference Angle
H.Melikian/1200
13
Example: Finding Reference Angles
Find the reference angle, for each of the following
angles:
a. 210 180 210 180 30
b. 7
4
2 2 7 8 7
4
4
c.
240 60
d.
3.6 3.6 3.14 0.46
H.Melikian/1200
4
4
14
Finding Reference Angles for Angles Greater Than 360°
(2 ) or Less Than –360° ( 2 )
H.Melikian/1200
15
Example: Finding Reference Angles
Find the reference angle for each of the following angles:
a.
665
360 305 55
15
7 8 7
b.
2
4
c. 11
3
H.Melikian/1200
4
4
4
11 12
3
3
3
4
16
Using Reference Angles to Evaluate Trigonometric Functions
A Procedure for using reference Angles to Evaluate Trigonometric Functions
H.Melikian/1200
17
Example: Using Reference Angles to Evaluate Trigonometric
Functions
sin135.
Use reference angles to find the exact value of
Step 1 Find the reference angle, and sin
360 360 300 60
Step 2 Use the quadrant in which lies to prefix the appropriate sign
to the function value in step 1.
3
sin 300 sin 60
2
H.Melikian/1200
18
Example: Using Reference Angles to Evaluate Trigonometric
Functions
5
Use reference angles to find the exact value of
tan
.
4
Step 1 Find the reference angle, and tan
5 4
4
4
4
Step 2 Use the quadrant in which lies to prefix the appropriate sign
to the function value in step 1.
tan
H.Melikian/1200
5
1
tan
4
4
19
Example: Using Reference Angles to Evaluate Trigonometric
Functions
.
sec
Use reference angles to find the exact value of
6
Step 1 Find the reference angle, and sec .
Step 2 Use the quadrant in which lies to prefix the
appropriate sign to the function value in step 1.
sec
sec
6
6
H.Melikian/1200
2 3
3
20