Welcome to Physics 211!
Download
Report
Transcript Welcome to Physics 211!
Kinematics
Review
Kinematics Review
a) Exam information
b) What kind of questions?
c) Review
Mechanics Lecture 4, Slide 1
First Midterm Exam on Friday
Covers Units 1-3 plus “Math”
One-dimensional Kinematics
Two-Dimensional Kinematics
Relative and Circular Motion
Unit conversion
Trigonometry and Algebra
50 minute duration
Multiple choice
Calculators Allowed/Needed
Three sheets of notes. (equivalent
font size>9)
(this is font size=9)
Mechanics Lecture 4, Slide 2
What type of questions?
Interpretation and use of graphs
position (m)
position vs time
2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
time (s)
Which of the following statements about the velocity of the cart is correct?
What is the velocity at t=?
What is the acceleration at t= ?
….
Mechanics Lecture 1, Slide 3
What type of questions?
Displacement, velocity and acceleration in 1 dimension
Given some combination of acceleration, initial velocity, final
velocity, displacement, elapsed time, etc. calculate an
unknown quantity using the kinematic equations….
Mechanics Lecture 1, Slide 4
What type of questions?
Motion with constant acceleration in 1-dimension
V0=0m/s
H=10m
V1
ground
Given some combination of acceleration, initial velocity, final
velocity, displacement, elapsed time, etc. calculate an
unknown quantity using the kinematic equations….
Mechanics Lecture 1, Slide 5
What type of questions?
Relative motion in 2 dimensions
Given some combination of relative velocity between frames
of reference answer questions related to the displacement
and elapsed times for certain actions…
Mechanics Lecture 1, Slide 6
What type of questions?
Projectile motion
vi
q
y
x
450 m
Given some combination of initial velocity, range , maximum
height, etc…calculate characteristics of projectile motion..
Mechanics Lecture 1, Slide 7
What type of questions?
Circular Motion
Top view
N
E
m
R
Given some combination of angular velocity, Radius, ac
calculate a characteristic of the motion of an object at
constant speed in a circle…
Mechanics Lecture 1, Slide 8
What type of questions?
Any material from Units 1-3
Calculations
Unit conversion
Algebra, trigonometry and vectors
Conceptual Questions
Similar to pre-lecture and checkpoint questions
Mechanics Lecture 1, Slide 9
What type of questions?
Vectors
A
q
Decompose a vector into polar or Cartesian coordinates
Vector Addition (Subtraction)
Mechanics Lecture 1, Slide 10
How to prepare?
Read the textbook
Review the video prelectures
Review the lecture slides
(Re-)Work homework problems
Prepare three sheets of notes
Basic Fundamental Equations
Derived Equations( and be able to derive them!)
Unit conversions
Algebra notes (quadratic equation)
Trigonometric relations
Vector concepts
Conceptual notes,…
Get enough sleep!!!
Mechanics Lecture 1, Slide 11
Main Points of Unit 1
Mechanics Lecture 1, Slide 12
Main Points of Unit 1
Mechanics Lecture 1, Slide 13
Vectors and 2d-kinematics – Main Points
Mechanics Lecture 2, Slide 14
Vectors and 2d-kinematics – Main Points
Mechanics Lecture 2, Slide 15
Vectors and 2d-kinematics
Important Equations
Mechanics Lecture 2, Slide 16
Relative and Circular Motion
a) Relative motion
b) Centripetal acceleration
Mechanics Lecture 3, Slide 17
Mechanics Lecture 3, Slide 18
Hyperphysics
Motion
Displacement vs timet
Velocity vs timet
Acceleration vs timet
Mechanics Lecture 1, Slide 19
Hyperphysics
Motion
Mechanics Lecture 1, Slide 20
1d-Kinematic Equations for constant acceleration
a ( t ) a0
v (t ) a0t v0
1 2
x (t ) a0t v0t x0
2
2
2
( v (t )) v0 ) 2a ( x (t ) x0 )
Basic Equations to be used for 1d –
kinematic problems.
Need to apply to each object
separately sometimes with time
offset
When acceleration changes from
one constant value to another say
a=0 The problem needs to be
broken down into segments
Mechanics Lecture 1, Slide 21
Maximum Height of ball thrown upward in gravitational field
What is the velocity of an object when it is at its maximum height?
vb f vb ( xb xbmax ) 0m / s
Two ways to solve for maximum height…
Solve for position directly
Solve for time first
vb f vb ( xb xbmax ) 0m / s
vb f vb ( xb xbmax ) 0m / s
vb f vb0 at
2a ( xb f xb0 ) 0m / s vb20
tf
vb f vb0
a
2
0m / s vb0
a
xb f xb0
Remember a is negative
xb f xb0
Use tf to solve for maximum height…
xb f
1 2
at f vb0 t f xb0
2
vb20
2a
1 2
at f vb0 t f
2
1 2
at f vb0 t f ( xb0 xb f ) 0
2
tf
vb0 vb20 2a ( xb0 xb f )
a
Mechanics Lecture 1, Slide 22
The meeting Problem
Define your problem; Identify useful equations Whenever possible solve symbolically.
Then plug in the numbers!!!! You can
object1 first _ launched
understand what is going on better if
td 0
you keep the equations organized.
x1 (t tmeet ) x2 (t tmeet )
1
1
a (tmeet td ) 2 v10 (tmeet td ) x10 a (tmeet ) 2 v20 (tmeet ) x20
2
2
Start solving…
1 2
1
1
1 2
atmeet a ( 2)td tmeet atd2 v10 tmeet v10 td x10 atmeet
v20 tmeet x20 0
2
2
2
2
Gather terms…Does the equation look reasonable?
1
(( atd v10 ) v20 )tmeet ( atd2 v10 td x10 ) x20 0
2
Solve for desired quantity…
Position of object 1 when object 2 is launched
1
( atd2 v10 td x10 )
1
2
( atd2 v10 td x10 ) x20 x (t t )
d
tmeet 2
(( atd v10 ) v20 )
v (t td )
This time is w.r.t object 2.
To obtain time w.r.t object 1
Speed of object 1 when object 2 is launched need to add delay time
( atd v10 )
(tmeet )1 tmeet td
Mechanics Lecture 1, Slide 23
Break problem into parts
Region 1: 0<t<1.5 s
Region 1 Region 2 Region 3
t t f ti 1.5s 0s
a a1 v / t (10m / s ) / 1.5s 6.667m / s 2
v (t 1.5s ) a1t v0 a1 (t 0) 0 a1t 0 (6.667m / s 2 )(1.5s ) 10.0m / s
1
1
x (t 1.5s ) x0 v0 t a1 ( t ) 2 (6.667m / s 2 )(1.5s ) 2 7.5m
2
2
Region 2: 1.5s<t<3.0s
a a2 v / t (0m / s ) / 1.5s 0m / s 2
v (t ) a2t v (t 1.5s ) 0t 10m / s 10.0m / s
x (t 3.0s ) x (t 1.5s ) v (t 1.5s )(3.0s 1.5s ) (10.0m / s )(1.5s ) 15.0m
x (t 3.0s ) x (t 1.5s ) 15.0m 7.5m 15.0m 22.5m
v (t 3.0s ) 0t v (t 1.5s ) 10.0m / s
Region 3: 3.0s<t<5.0s
t t f ti 5.0s 3.0s 2.0s
What happened in region 3?
Smartphysics Conclusion
a a3 v / t ( v f vi ) / 2.0s ( 10m / s 10.0m / s ) / 2.0s 10m / s 2
v (t 5s ) a2 t v (t 3.0s ) ( 10m / s 2 )( 2 s ) 10m / s 10.0m / s
1
1
a3 ( t ) 2 v (t 3.0s ) t ( 10m / s 2 )( 2.0) 2 (10m / s )( 2.0s )
2
2
x (t 5.0s ) x (t 3.0s ) ( 20m ) ( 20m ) x (t 3.0s ) 22.5m
x (t 5.0s ) x (t 3.0s )
v (t 5.0s ) a2 t v (t 3.0s ) ( 10m / s 2 )( 2.0) 10m / s 10.0m / s
Mechanics Lecture 1, Slide 24
2d-Vectors
A
q
Think of a vector as an arrow.
(An object having both magnitude and direction)
The object is the same no matter how we chose to describe it
Mechanics Lecture 2, Slide 25
Algebra and Trigonometry
Algebra
Algebra is “fair”
Quadratic Equation
ax 2 bx c 0
b b2 4ac
x
2a
Trigonometry
Mechanics Lecture 2, Slide 26
Vector Addition
Add
Components!!!
AddTail to Head
Mechanics Lecture 2, Slide 27
Kinematics in 3D
Mechanics Lecture 2, Slide 28
Projectile Motion
Horizontal
Vertical
Boring
Mechanics Lecture 2, Slide 29
Ballistic Projectile Motion Quantities
Initial velocity
speed,angle
Maximum Height of trajectory, h=ymax
“Hang Time”
Time of Flight, tf
Range of trajectory, D
Height of trajectory at arbitrary x,t
Mechanics Lecture 2, Slide 30
Derived Projectile Trajectory Equations
Maximum height
v02 sin 2 q
h y0
2g
Time of Flight (“Hang Time”)
tf
2v0 y
g
2v0 sin q
g
Range of trajectory
v02 sin 2q
D
g
Height of trajectory as f(t) , y(t)
y (t ) y0 v0 y t
1 2
gt
2
Height of trajectory as f(x), y(x)
x 1 x
g
y ( x ) v0 sin q
v0 cos q 2 v0 cos q
2
Mechanics Lecture 1, Slide 31
Relative Motion in 2 Dimensions
Speed relative to shore
Mechanics Lecture 3, Slide 32
Relative Motion in 2 Dimensions
Direction w.r.t shoreline
Mechanics Lecture 3, Slide 33
Centripetal Acceleration
Constant speed in circular path
Acceleration directed toward center
of circle
What is the magnitude of
acceleration?
Proportional to:
1. Speed
1. time rate of change of
angle or angular velocity
dq
dt
v = R
v2
ac
R
Mechanics Lecture 3, Slide 34
Additional Slides
Mechanics Lecture 1, Slide 35
v = R
is the rate at which the angle q changes:
dq
dt
q
Once around:
v x / t = 2pR / T
q / t = 2p / T
Mechanics Lecture 3, Slide 36
v = R
Another way to see it:
dq
R
v dt =R dq
dq
vR
dt
v = R
Mechanics Lecture 3, Slide 37
Two thrown balls problem #2
Use your equation in symbolic form and gather the values to be used….
1
( atd2 v10 td x10 ) x20 x (t t )
d
tmeet 2
(( atd v10 ) v20 )
v (t td )
a 9.81m / s; td 0.4 s; v10 1.2m / s; v20 23.8m / s; x10 26m; x20 1m
Solve for individual elements of equation…can check if things make sense
Position of object 1 at moment object 2 is launched
1
1
( atd2 v10 td x10 ) ( ( 9.81m / s 2 )(0.4 s ) 2 ( 1.2m / s )(0.4 s ) 26m 24.735m
2
2
Velocity of object 1 at moment object 2 is launched
( atd v10 ) ( 9.81m / s 2 )(0.4 s ) ( 1.2m / s ) 5.124m / s
Solve for displacement and relative velocity at time when object 2 launches
x (t td ) 24.735m 1m 23.735m
v (t td ) 5.124m / s 23.8m / s 28.94m / s
Note that acceleration term
nd
Divide to obtain time when objects meet after 2 object is released
drops out!!!
x ( t t d )
tmeet
0.82 s
v ( t t d )
tred tmeet td 1.22 s
Mechanics Lecture 1, Slide 38
Homework Hints – Stadium Wall
Calculate time to reach wall using vx:
twall xwall / v0 x xwall / v0 cos q
Calculate y position at time to reach wall:
ywall y0 v0 y twall
1
2
g twall
2
ywall y0 v0 sin q xwall / v0 cos q
ywall y0 xwall tan q
1
2
g xwall / v0 cos q
2
1
2
g xwall / v0 cos q
2
Mechanics Lecture 1, Slide 39
Homework Hints – Stadium Wall
Calculate time to reach wall using vx:
twall xwall / v0 x xwall / v0 cos q
Calculate y position at time to reach wall:
ywall y0 v0 y twall
1
2
g twall
2
ywall y0 v0 sin q xwall / v0 cos q
ywall y0 xwall tan q
1
2
g xwall / v0 cos q
2
1
2
g xwall / v0 cos q
2
Mechanics Lecture 1, Slide 40
Homework Solutions-Baseball Stadium
twall xwall / v0 x xwall / v0 cos q
ywall y0 v0 y twall
1
2
g twall
2
ywall y0 v0 sin q xwall / v0 cos q
ywall y0 xwall tan q
1
2
g xwall / v0 cos q
2
1
2
g xwall / v0 cos q
2
x 565 ft;q 350 ; g 32.2 ft / s 2 ; y0 0
1
2
g xwall / v0 cos q
2
2
3 ft (565 ft )(.7002) (16.1 ft / s 2 )565 ft / 176 ft / s 0.8192)
ywall y0 xwall tan q
ywall
ywall 3 ft 395.61 ft 247.24 ft 151.37 ft
Mechanics Lecture 1, Slide 41
Plane Ride
ˆ
ˆ
v plane, ground v plane,air vair , ground
v plane,air 140i 0 j
vair , ground ( 35 * sin 30)iˆ (35 * cos 30) ˆj
ˆ
ˆ
v
ˆ
v plane, ground (140 35 * sin 30)i (35 * cos 30) j
j
plane , ground
q
v plane, ground (122.5)iˆ (30.31) ˆj
iˆ
v plane,air
v plane, ground (122.5) 2 (30.31) 2 126.19m / s
N
vair , ground
E
v plane, ground (122.5)iˆ (30.31) ˆj
v
30.31
0
tan 1 plane, ground , y tan 1
13.89
122.5
v plane, ground , x
q 90 90 13.89 76.100 East of north
x (122.5m / s ) * (3600s / hr ) * 1hr 441,000m
Mechanics Lecture 3, Slide 42
Car on Curve
v 2 22m / s
ac
2.547m / s 2
R
190m
2
ac , x ( 2.547m / s 2 ) * cos(1800 160 ) 2.4483m / s 2
ac , y ( 2.547m / s 2 ) * sin(1800 160 ) 0.702m / s 2
Mechanics Lecture 3, Slide 43
Maximum Height of Trajectory
v y (t ) v0 y gt
Height of trajectory,h=ymax
ymax v y 0 t ymax
v0 y
g
h y (t ymax )
h y0 v0 y t ymax
1 2
gt ymax
2
2
v02 y
1v
0y
h y0
g 2 g
h y0
v02 y
2g
v02 sin 2 q
h y0
2g
Mechanics Lecture 2, Slide 44
Time of Flight, “Hang Time”
1 2
gt
2
t t f y ( t t f ) y0
y (t ) y0 v0 y t
1 2
gt f
2
1
1
v0 y t f gt 2f t f v0 y gt f
2
2
2v0 y 2v0 sin q
t f 0; t f
g
g
y0 y0 v0 y t f
0
Mechanics Lecture 2, Slide 45
Range of trajectory
x (t ) x0 v0 x t
t t f y ( t t f ) y0
D x (t t f ) 0 v0 x t f
D
2v0 x v0 y
g
2v02 cos q sin q
g
v02 sin 2q
D
g
Mechanics Lecture 2, Slide 46
Angle for Maximum Range
MAXIMUM range OCCURS AT 450
f (q ) sin(2q )
df (q )
2 cos(2q )
dq
df (q )
0 cos(2q ) 0
dq
2q 900
q 450
Mechanics Lecture 2, Slide 47
Height of Trajectory at time t or position x
Height of trajectory, y(t)
1 2
y (t ) y0 v0 y t gt
2
Height of trajectory, y(x)
x x0 v0 x t
t
x x0
v0 x
x x0 1 x x0
g
y ( x ) y0 v0 y
v
2
v
0x
0x
x0 0; y0 0
x 1 x
g
y ( x ) v0 y
v
2
v
0x
0x
2
2
x 1 x
g
y ( x ) v0 sin q
v
cos
q
2
v
cos
q
0
0
2
Mechanics Lecture 2, Slide 48
Launch Velocity-Given R and q
Mechanics Lecture 1, Slide 49
Launch Angle
Mechanics Lecture 1, Slide 50
Launch Velocity –Given R and h
Mechanics Lecture 1, Slide 51