7 - WordPress.com

Download Report

Transcript 7 - WordPress.com

Introduction
β€’ This chapter extends your knowledge of
Trigonometrical identities
β€’ You will see how to solve equations involving
combinations of sin, cos and tan
β€’ You will learn to express combinations of
these as a transformation of a single graph
Further Trigonometric Identities and their
Applications
You need to know and be able to
use the addition formulae
Q
By GCSE Trigonometry:
1
So the coordinates of P are:
B
P
1
A
O
M
N
So the coordinates of Q are:
𝑆𝑖𝑛𝐴 βˆ’ 𝑆𝑖𝑛𝐡
Q
P
7A
Further Trigonometric Identities and their
Applications
You need to know and be able to
use the addition formulae
𝑃𝑄2 = (πΆπ‘œπ‘ π΄ βˆ’ πΆπ‘œπ‘ π΅)2 + (𝑆𝑖𝑛𝐴 βˆ’ 𝑆𝑖𝑛𝐡)2
Multiply out
the brackets
𝑃𝑄2 = (πΆπ‘œπ‘  2 𝐴 βˆ’ 2πΆπ‘œπ‘ π΄πΆπ‘œπ‘ π΅ + πΆπ‘œπ‘  2 𝐡) + (𝑆𝑖𝑛2 𝐴 βˆ’ 2𝑆𝑖𝑛𝐴𝑆𝑖𝑛𝐡 + 𝑆𝑖𝑛2 𝐡)
Rearrange
𝑃𝑄2 = (πΆπ‘œπ‘  2 𝐴 + 𝑆𝑖𝑛2 𝐴) + (πΆπ‘œπ‘  2 𝐡 + 𝑆𝑖𝑛2 𝐡) βˆ’ 2(πΆπ‘œπ‘ π΄πΆπ‘œπ‘ π΅ + 𝑆𝑖𝑛𝐴𝑆𝑖𝑛𝐡)
πΆπ‘œπ‘  2 ΞΈ + 𝑆𝑖𝑛2 ΞΈ ≑ 1
𝑃𝑄2 = 2 βˆ’ 2(πΆπ‘œπ‘ π΄πΆπ‘œπ‘ π΅ + 𝑆𝑖𝑛𝐴𝑆𝑖𝑛𝐡)
7A
Further Trigonometric Identities and their
Applications
You need to know and be able to
use the addition formulae
Q
You can also work out PQ using the triangle OPQ:
Q
P
1
1
B-A
B
P
1
A
O
1
M
N
π‘Ž2 = 𝑏 2 + 𝑐 2 βˆ’ 2bcCosA
Sub in the values
𝑃𝑄2 = 12 + 12 βˆ’ 2Cos(B - A)
Group terms
𝑃𝑄2 = 2 βˆ’ 2Cos(B - A)
𝑃𝑄2 = 2 βˆ’ 2Cos(A - B)
Cos (B – A) = Cos (A – B)
eg) Cos(60) = Cos(-60)
7A
Further Trigonometric Identities and their
Applications
You need to know and be able to
use the addition formulae
𝑃𝑄2 = 2 βˆ’ 2(πΆπ‘œπ‘ π΄πΆπ‘œπ‘ π΅ + 𝑆𝑖𝑛𝐴𝑆𝑖𝑛𝐡)
𝑃𝑄2 = 2 βˆ’ 2Cos(A - B)
2 βˆ’ 2(πΆπ‘œπ‘ π΄πΆπ‘œπ‘ π΅ + 𝑆𝑖𝑛𝐴𝑆𝑖𝑛𝐡) = 2 βˆ’ 2Cos(A - B)
βˆ’ 2(πΆπ‘œπ‘ π΄πΆπ‘œπ‘ π΅ + 𝑆𝑖𝑛𝐴𝑆𝑖𝑛𝐡) = βˆ’ 2Cos(A - B)
πΆπ‘œπ‘ π΄πΆπ‘œπ‘ π΅ + 𝑆𝑖𝑛𝐴𝑆𝑖𝑛𝐡 = Cos(A - B)
Subtract 2 from both
sides
Divide by -2
Cos(A - B) = CosACosB + SinASinB
Cos(A + B) = CosACosB - SinASinB
7A
Further Trigonometric Identities and their
Applications
You need to know and be able to
use the addition formulae
Cos(A - B) ≑ CosACosB + SinASinB
Cos(A + B) ≑ CosACosB - SinASinB
Sin(A + B) ≑ SinACosB + CosASinB
Sin(A - B) ≑ SinACosB - CosASinB
7A
Further Trigonometric Identities and their
Applications
You need to know and be able to
use the addition formulae
Sin(A + B) = SinACosB + CosASinB
Sin(A - B) = SinACosB - CosASinB
Tan (A+B) ≑
Tan (A+B) ≑
Cos(A - B) = CosACosB + SinASinB
Cos(A + B) = CosACosB - SinASinB
Tan (A+B) ≑
Show that:
Tan (A + B) ≑
Tan ΞΈ ≑
π‘‡π‘Žπ‘›π΄+π‘‡π‘Žπ‘›π΅
1βˆ’π‘‡π‘Žπ‘›π΄π‘‡π‘Žπ‘›π΅
Tan (A+B) ≑
𝑆𝑖𝑛(𝐴+𝐡)
πΆπ‘œπ‘ (𝐴+𝐡)
π‘†π‘–π‘›π΄πΆπ‘œπ‘ π΅+πΆπ‘œπ‘ π΄π‘†π‘–π‘›π΅
πΆπ‘œπ‘ π΄πΆπ‘œπ‘ π΅βˆ’π‘†π‘–π‘›π΄π‘†π‘–π‘›π΅
π‘†π‘–π‘›π΄πΆπ‘œπ‘ π΅ πΆπ‘œπ‘ π΄π‘†π‘–π‘›π΅
+
πΆπ‘œπ‘ π΄πΆπ‘œπ‘ π΅ πΆπ‘œπ‘ π΄πΆπ‘œπ‘ π΅
πΆπ‘œπ‘ π΄πΆπ‘œπ‘ π΅ 𝑆𝑖𝑛𝐴𝑆𝑖𝑛𝐡
βˆ’
πΆπ‘œπ‘ π΄πΆπ‘œπ‘ π΅ πΆπ‘œπ‘ π΄πΆπ‘œπ‘ π΅
TanA + TanB
1 - TanATanB
Rewrite
Divide top and
bottom by
CosACosB
Simplify each
Fraction
𝑆𝑖𝑛θ
πΆπ‘œπ‘ ΞΈ
7A
Further Trigonometric Identities and their
Applications
You need to know and be able to
use the addition formulae
Cos(A - B) ≑ CosACosB + SinASinB
Cos(A + B) ≑ CosACosB - SinASinB
Sin(A + B) ≑ SinACosB + CosASinB
Sin(A - B) ≑ SinACosB - CosASinB
Tan (A + B) ≑
π‘‡π‘Žπ‘›π΄+π‘‡π‘Žπ‘›π΅
1βˆ’π‘‡π‘Žπ‘›π΄π‘‡π‘Žπ‘›π΅
Tan (A - B) ≑
π‘‡π‘Žπ‘›π΄βˆ’π‘‡π‘Žπ‘›π΅
1+π‘‡π‘Žπ‘›π΄π‘‡π‘Žπ‘›π΅
You may be asked to prove
either of the Tan
identities using the Sin and
Cos ones!
7A
Further Trigonometric Identities and their
Applications
You need to know and be able to
use the addition formulae
Cos(A + B) ≑ CosACosB - SinASinB
𝑆𝑖𝑛15 = 𝑆𝑖𝑛(45 βˆ’ 30)
Sin(A - B) ≑ SinACosB - CosASinB
A=45,
B=30
Cos(A - B) ≑ CosACosB + SinASinB
Sin(A + B) ≑ SinACosB + CosASinB
Sin(45 - 30) ≑ Sin45Cos30 – Cos45Sin30
Sin(A - B) ≑ SinACosB - CosASinB
π‘‡π‘Žπ‘›π΄+π‘‡π‘Žπ‘›π΅
Tan (A + B) ≑ 1βˆ’π‘‡π‘Žπ‘›π΄π‘‡π‘Žπ‘›π΅
π‘‡π‘Žπ‘›π΄βˆ’π‘‡π‘Žπ‘›π΅
Tan (A - B) ≑ 1+π‘‡π‘Žπ‘›π΄π‘‡π‘Žπ‘›π΅
Show, using the formula for Sin(A – B),
that:
𝑆𝑖𝑛15 =
6βˆ’ 2
4
Sin(45 - 30) ≑
Sin(45 - 30) ≑
Sin(15) ≑
2
3
×
βˆ’
2
2
6
βˆ’
4
6βˆ’ 2
4
2
4
1
2
×
2
2
These can
be written
as surds
Multiply
each pair
Group the
fractions up
7A
Further Trigonometric Identities and their
Applications
You need to know and be able to
use the addition formulae
Given that:
SinA = βˆ’
3
5
CosB = βˆ’
𝑂𝑝𝑝
𝐻𝑦𝑝
3
𝑆𝑖𝑛𝐴 = βˆ’
5
180˚ < A < 270˚
12
13
𝑆𝑖𝑛𝐴 =
5
3
A
𝑂𝑝𝑝
𝐴𝑑𝑗
π‘‡π‘Žπ‘›π΄ =
3
4
4
B = Obtuse
Use Pythagoras’ to find the missing side (ignore negatives)
Find the value of:
Tan is positive in the range 180˚ - 270˚
Tan(A+B)
Tan (A + B) ≑
π‘‡π‘Žπ‘›π΄ =
πΆπ‘œπ‘ π΅ =
π‘‡π‘Žπ‘›π΄+π‘‡π‘Žπ‘›π΅
1βˆ’π‘‡π‘Žπ‘›π΄π‘‡π‘Žπ‘›π΅
𝐴𝑑𝑗
𝐻𝑦𝑝
πΆπ‘œπ‘ π΅ = βˆ’
12
13
13
π‘‡π‘Žπ‘›π΅ =
𝑂𝑝𝑝
𝐴𝑑𝑗
π‘‡π‘Žπ‘›π΅ =
5
12
5
B
12
5
12
Use Pythagoras’ to find the missing side (ignore negatives)
π‘‡π‘Žπ‘›π΅ = βˆ’
90
180
270
360
y = TanΞΈ
Tan is negative in the range 90˚ - 180˚
7A
Further Trigonometric Identities and their
Applications
You need to know and be able to
use the addition formulae
π‘‡π‘Žπ‘›π΄+π‘‡π‘Žπ‘›π΅
Given that:
SinA =
3
βˆ’
5
CosB = βˆ’
12
13
Tan (A + B) ≑ 1βˆ’π‘‡π‘Žπ‘›π΄π‘‡π‘Žπ‘›π΅
180˚ < A < 270˚
B = Obtuse
Tan (A + B) ≑
3
5
+
βˆ’
4
12
3
5
1βˆ’ 4×βˆ’12
Tan (A + B) ≑
1
3
63
48
Find the value of:
Tan(A+B)
3
π‘‡π‘Žπ‘›π΄ =
4
5
π‘‡π‘Žπ‘›π΅ = βˆ’
12
1
Work out the
Numerator and
Denominator
Leave, Change and
Flip
π‘‡π‘Žπ‘›π΄+π‘‡π‘Žπ‘›π΅
Tan (A + B) ≑ 1βˆ’π‘‡π‘Žπ‘›π΄π‘‡π‘Žπ‘›π΅
Substitute in TanA
and TanB
48
Tan (A + B) ≑ 3 × 63
Simplify
16
Tan (A + B) ≑ 63
Although you could just type the whole thing into your
calculator, you still need to show the stages for the
workings marks…
7A
Further Trigonometric Identities and their
Applications
You need to know and be able to use the addition formulae
Given that:
2 𝑠𝑖𝑛 π‘₯ + 𝑦 = 3π‘π‘œπ‘ (π‘₯ βˆ’ 𝑦)
Express Tanx in terms of Tany…
2 𝑠𝑖𝑛 π‘₯ + 𝑦 = 3π‘π‘œπ‘ (π‘₯ βˆ’ 𝑦)
2(𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘¦ + π‘π‘œπ‘ π‘₯𝑠𝑖𝑛𝑦) = 3(π‘π‘œπ‘ π‘₯π‘π‘œπ‘ π‘¦ + 𝑠𝑖𝑛π‘₯𝑠𝑖𝑛𝑦)
Rewrite the sin and cos parts
Multiply out the brackets
2 𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘¦ + 2π‘π‘œπ‘ π‘₯𝑠𝑖𝑛𝑦 = 3 π‘π‘œπ‘ π‘₯π‘π‘œπ‘ π‘¦ + 3𝑠𝑖𝑛π‘₯𝑠𝑖𝑛𝑦
2 𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘¦ + 2π‘π‘œπ‘ π‘₯𝑠𝑖𝑛𝑦 = 3 π‘π‘œπ‘ π‘₯π‘π‘œπ‘ π‘¦ + 3𝑠𝑖𝑛π‘₯𝑠𝑖𝑛𝑦
π‘π‘œπ‘ π‘₯π‘π‘œπ‘ π‘¦
π‘π‘œπ‘ π‘₯π‘π‘œπ‘ π‘¦
π‘π‘œπ‘ π‘₯π‘π‘œπ‘ π‘¦
π‘π‘œπ‘ π‘₯π‘π‘œπ‘ π‘¦
2 π‘‘π‘Žπ‘›π‘₯ + 2π‘‘π‘Žπ‘›π‘¦ = 3 +3π‘‘π‘Žπ‘›π‘₯π‘‘π‘Žπ‘›π‘¦
2 π‘‘π‘Žπ‘›π‘₯ βˆ’ 3π‘‘π‘Žπ‘›π‘₯π‘‘π‘Žπ‘›π‘¦ = 3 βˆ’2π‘‘π‘Žπ‘›π‘¦
π‘‘π‘Žπ‘›π‘₯(2 βˆ’ 3π‘‘π‘Žπ‘›π‘¦) = 3 βˆ’2π‘‘π‘Žπ‘›π‘¦
π‘‘π‘Žπ‘›π‘₯ = 3 βˆ’2π‘‘π‘Žπ‘›π‘¦
2 βˆ’3π‘‘π‘Žπ‘›π‘¦
Divide all by cosxcosy
Simplify
Subtract 3tanxtany
Subtract 2tany
Factorise the left side
Divide by (2 – 3tany)
7A
Further Trigonometric Identities and their
Applications
You can express sin2A, cos 2A and
tan2A in terms of angle A, using
the double angle formulae
Sin(A + B) ≑ SinACosB + CosASinB
Replace B with A
Sin(A + A) ≑ SinACosA + CosASinA
Simplify
Sin2A ≑ 2SinACosA
1
Sin2A
2
≑ SinACosA
Sin4A ≑ 2Sin2ACos2A
÷ 2
2A οƒ  4A
Sin2A ≑ 2SinACosA
x 3
3Sin2A ≑ 6SinACosA
2A = 60
Sin60 ≑ 2Sin30Cos30
7B
Further Trigonometric Identities and their
Applications
You can express sin2A, cos 2A and
tan2A in terms of angle A, using
the double angle formulae
Cos(A + B) ≑ CosACosB - SinASinB
Cos(A + A) ≑ CosACosA - SinASinA
Replace B with A
Simplify
Cos2A ≑ Co𝑠 2 𝐴 βˆ’ 𝑆𝑖𝑛2 𝐴
Cos2A ≑ Co𝑠 2 𝐴 βˆ’ 𝑆𝑖𝑛2 𝐴
Replace Cos2A with (1 – Sin2A)
Replace Sin2A with (1 – Cos2A)
Cos2A ≑ (1βˆ’π‘†π‘–π‘›2 𝐴) βˆ’ 𝑆𝑖𝑛2 𝐴
Cos2A ≑ Co𝑠 2 𝐴 βˆ’ (1 - Co𝑠 2 𝐴)
Cos2A ≑ 1 βˆ’ 2𝑆𝑖𝑛2 𝐴
Cos2A ≑ 2Co𝑠 2 𝐴 βˆ’ 1
7B
Further Trigonometric Identities and their
Applications
You can express sin2A, cos 2A and
tan2A in terms of angle A, using
the double angle formulae
π‘‡π‘Žπ‘›π΄+π‘‡π‘Žπ‘›π΅
Tan (A + B) ≑ 1βˆ’π‘‡π‘Žπ‘›π΄π‘‡π‘Žπ‘›π΅
Replace B with A
π‘‡π‘Žπ‘›π΄+π‘‡π‘Žπ‘›π΄
Tan (A + A) ≑ 1βˆ’π‘‡π‘Žπ‘›π΄π‘‡π‘Žπ‘›π΄
Simplify
2π‘‡π‘Žπ‘›π΄
Tan 2A ≑ 1βˆ’π‘‡π‘Žπ‘›2𝐴
1
Tan 2A
2
≑
2π‘‡π‘Žπ‘›30
π‘‡π‘Žπ‘›π΄
1βˆ’π‘‡π‘Žπ‘›2 𝐴
÷ 2
2A = 60
Tan 60 ≑ 1βˆ’π‘‡π‘Žπ‘›2 30
2π‘‡π‘Žπ‘›π΄
x 2
2Tan 2A ≑
4π‘‡π‘Žπ‘›π΄
1βˆ’π‘‡π‘Žπ‘›2 𝐴
Tan 2A ≑ 1βˆ’π‘‡π‘Žπ‘›2𝐴
2A = A
𝐴
Tan A ≑
2π‘‡π‘Žπ‘› 2
𝐴
1βˆ’π‘‡π‘Žπ‘›2 2
7B
Further Trigonometric Identities and their
Applications
You can express sin2A, cos 2A and
tan2A in terms of angle A, using
the double angle formulae
Rewrite the following as a single
Trigonometric function:
πœƒ
πœƒ
2𝑠𝑖𝑛 π‘π‘œπ‘  π‘π‘œπ‘ πœƒ
2
2
𝑆𝑖𝑛2πœƒ ≑ 2π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ
πœƒ
πœƒ
π‘†π‘–π‘›πœƒ ≑ 2𝑠𝑖𝑛 π‘π‘œπ‘ 
2
2
πœƒ
πœƒ
2𝑠𝑖𝑛 π‘π‘œπ‘  π‘π‘œπ‘ πœƒ
2
2
2ΞΈ οƒ  ΞΈ
Replace the first
part
= π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ
Rewrite
1
= 𝑠𝑖𝑛2πœƒ
2
7B
Further Trigonometric Identities and their
Applications
You can express sin2A, cos 2A and
tan2A in terms of angle A, using
the double angle formulae
πΆπ‘œπ‘ 2πœƒ ≑ 2π‘π‘œπ‘  2 πœƒ βˆ’ 1
πΆπ‘œπ‘ 4πœƒ ≑ 2π‘π‘œπ‘  2 2πœƒ βˆ’ 1
Double the
angle parts
Show that:
1 + π‘π‘œπ‘ 4πœƒ
Can be written as:
2π‘π‘œπ‘  2 2πœƒ
1 + π‘π‘œπ‘ 4πœƒ
= 1 + (2π‘π‘œπ‘  2 2πœƒ βˆ’ 1)
= 2π‘π‘œπ‘  2 2πœƒ
Replace
cos4ΞΈ
The 1s
cancel out
7B
Further Trigonometric Identities and their
Applications
You can express sin2A, cos 2A and
tan2A in terms of angle A, using
the double angle formulae
Given that:
3
π‘π‘œπ‘ π‘₯ =
4
πΆπ‘œπ‘ π‘₯ =
𝐴𝑑𝑗
𝐻𝑦𝑝
4
180˚ < π‘₯ < 360˚
𝑆𝑖𝑛π‘₯ =
7
4
7
3
πΆπ‘œπ‘ π‘₯ =
4
x
Use Pythagoras’ to find the missing side (ignore negatives)
Cosx is positive so in the range 270 - 360
𝑠𝑖𝑛2π‘₯
Therefore, Sinx is negative
180
𝑂𝑝𝑝
𝐻𝑦𝑝
3
Find the exact value of:
90
𝑆𝑖𝑛π‘₯ =
270
360
y = CosΞΈ
7
4
Sin2x ≑ 2SinxCosx
Sin2x = 2 ×
y = SinΞΈ
𝑆𝑖𝑛π‘₯ = βˆ’
Sin2x = βˆ’
3
×
4
3 7
8
βˆ’
7
4
Sub in Sinx and Cosx
Work out and leave in
surd form
7B
Further Trigonometric Identities and their
Applications
You can express sin2A, cos 2A and
tan2A in terms of angle A, using
the double angle formulae
Given that:
3
π‘π‘œπ‘ π‘₯ =
4
πΆπ‘œπ‘ π‘₯ =
𝐴𝑑𝑗
𝐻𝑦𝑝
4
180˚ < π‘₯ < 360˚
x
270
360
y = CosΞΈ
270
360
y = TanΞΈ
π‘‡π‘Žπ‘›π‘₯ = βˆ’
7
3
2π‘‡π‘Žπ‘›π‘₯
Tan 2x ≑ 1βˆ’π‘‡π‘Žπ‘›2π‘₯
Tan 2x =
180
7
3
Use Pythagoras’ to find the missing side (ignore negatives)
Therefore, Tanx is negative
90
π‘‡π‘Žπ‘›π‘₯ =
7
3
πΆπ‘œπ‘ π‘₯ =
4
Cosx is positive so in the range 270 - 360
π‘‘π‘Žπ‘›2π‘₯
180
𝑂𝑝𝑝
𝐴𝑑𝑗
3
Find the exact value of:
90
π‘‡π‘Žπ‘›π‘₯ =
2×βˆ’
7
Sub in Tanx
7
3
7
1βˆ’ βˆ’ 3 ×βˆ’ 3
π‘‡π‘Žπ‘›2π‘₯ = βˆ’3 7
Work out and leave in
surd form
7B
Further Trigonometric Identities and their
Applications
The double angle formulae allow you
to solve more equations and prove
more identities
Prove the identity:
π‘‘π‘Žπ‘›2πœƒ ≑
2
π‘π‘œπ‘‘πœƒ βˆ’ π‘‘π‘Žπ‘›πœƒ
π‘‘π‘Žπ‘›2πœƒ ≑
2π‘‘π‘Žπ‘›πœƒ
1 βˆ’ π‘‘π‘Žπ‘›2 πœƒ
2π‘‘π‘Žπ‘›πœƒ
π‘‘π‘Žπ‘›πœƒ
π‘‘π‘Žπ‘›2πœƒ ≑
1
π‘‘π‘Žπ‘›2 πœƒ
βˆ’
π‘‘π‘Žπ‘›πœƒ π‘‘π‘Žπ‘›πœƒ
π‘‘π‘Žπ‘›2πœƒ ≑
Divide each part by
tanΞΈ
Rewrite each part
2
π‘π‘œπ‘‘πœƒ βˆ’ π‘‘π‘Žπ‘›πœƒ
7C
Further Trigonometric Identities and their
Applications
The double angle formulae allow you 𝑠𝑖 𝑛 𝐴 + 𝐡 ≑ π‘ π‘–π‘›π΄π‘π‘œπ‘ π΅ + π‘π‘œπ‘ π΄π‘ π‘–π‘›π΅
to solve more equations and prove
more identities
Replace A and B
𝑠𝑖 𝑛 2𝐴 + 𝐴 ≑ 𝑠𝑖𝑛2π΄π‘π‘œπ‘ π΄ + π‘π‘œπ‘ 2𝐴𝑠𝑖𝑛𝐴
By expanding:
𝑠𝑖 𝑛 3𝐴 ≑ (2π‘ π‘–π‘›π΄π‘π‘œπ‘ π΄)π‘π‘œπ‘ π΄ + (1 βˆ’ 2𝑠𝑖𝑛2 𝐴)𝑠𝑖𝑛𝐴
𝑠𝑖𝑛(2𝐴 + 𝐴)
Show that:
𝑠𝑖 𝑛 3𝐴 ≑ 3𝑠𝑖𝑛𝐴 βˆ’ 4𝑠𝑖𝑛3 𝐴
𝑠𝑖 𝑛 3𝐴 ≑ 2π‘ π‘–π‘›π΄π‘π‘œπ‘  2 𝐴 + 𝑠𝑖𝑛𝐴 βˆ’ 2𝑠𝑖𝑛3 𝐴
𝑠𝑖 𝑛 3𝐴 ≑ 2𝑠𝑖𝑛𝐴(1 βˆ’ 𝑠𝑖𝑛2 𝐴) + 𝑠𝑖𝑛𝐴 βˆ’ 2𝑠𝑖𝑛3 𝐴
Replace
Sin2A and
Cos 2A
Multiply
out
Replace
cos2A
Multiply out
𝑠𝑖 𝑛 3𝐴 ≑ 2𝑠𝑖𝑛𝐴 βˆ’ 2𝑠𝑖𝑛3 𝐴 + 𝑠𝑖𝑛𝐴 βˆ’ 2𝑠𝑖𝑛3 𝐴
𝑠𝑖 𝑛 3𝐴 ≑ 3𝑠𝑖𝑛𝐴 βˆ’ 4𝑠𝑖𝑛3 𝐴
Group like
terms
7C
Further Trigonometric Identities and their
Applications
The double angle formulae allow you
to solve more equations and prove
more identities
Given that:
π‘₯ = 3π‘ π‘–π‘›πœƒ and 𝑦 = 3 βˆ’ 4π‘π‘œπ‘ 2πœƒ
Eliminate ΞΈ and express y in terms of x…
π‘₯ = 3π‘ π‘–π‘›πœƒ
π‘₯
= π‘ π‘–π‘›πœƒ
3
3βˆ’π‘¦
= π‘π‘œπ‘ 2πœƒ
4
3βˆ’π‘¦
π‘₯
= 1βˆ’2
4
3
2
Replace Cos2ΞΈ and
SinΞΈ
Multiply by 4
π‘₯
3βˆ’π‘¦ = 4βˆ’8
3
2
Subtract 3
βˆ’π‘¦ = 1 βˆ’ 8
Divide
by 3
𝑦 = 3 βˆ’ 4π‘π‘œπ‘ 2πœƒ
π‘π‘œπ‘ 2πœƒ = 1 βˆ’ 2𝑠𝑖𝑛2 πœƒ
π‘₯
3
2
Multiply by -1
𝑦 = 8
π‘₯
3
2
βˆ’1
Subtract 3, divide by 4
Multiply by -1
7C
Further Trigonometric Identities and their
Applications
The double angle formulae allow you
to solve more equations and prove
more identities
Solve the following equation in the range
stated:
3π‘π‘œπ‘ 2π‘₯ βˆ’ π‘π‘œπ‘ π‘₯ + 2 = 0
3π‘π‘œπ‘ 2π‘₯ βˆ’ π‘π‘œπ‘ π‘₯ + 2 = 0
3(2π‘π‘œπ‘  2 π‘₯ βˆ’ 1) βˆ’ π‘π‘œπ‘ π‘₯ + 2 = 0
y = CosΞΈ
2
3
90
180
270
Group terms
2
6π‘π‘œπ‘  π‘₯ βˆ’ π‘π‘œπ‘ π‘₯ βˆ’ 1 = 0
Factorise
(3π‘π‘œπ‘ π‘₯ + 1)(2π‘π‘œπ‘ π‘₯ βˆ’ 1) = 0
(All trigonometrical parts must be in terms
x, rather than 2x)
βˆ’1
Multiply out the
bracket
6π‘π‘œπ‘  2 π‘₯ βˆ’ 3 βˆ’ π‘π‘œπ‘ π‘₯ + 2 = 0
0° ≀ π‘₯ ≀ 360°
1
Replace cos2x
360
π‘π‘œπ‘ π‘₯ = βˆ’
1
1
or π‘π‘œπ‘ π‘₯ =
3
2
Solve both pairs
π‘₯ = π‘π‘œπ‘  βˆ’1 βˆ’
1
3
π‘₯ = 109.5° , 250.5°
π‘₯ = π‘π‘œπ‘  βˆ’1
1
2
Remember to find
additional answers!
π‘₯ = 60° , 300°
π‘₯ = 60°, 109.5°, 250.5°, 300°
7C
Further Trigonometric Identities and their
Applications
You can write expressions of the
form acosΞΈ + bsinΞΈ, where a and
b are constants, as a sine or
cosine function only
Show that:
3𝑠𝑖𝑛π‘₯ + 4π‘π‘œπ‘ π‘₯
Can be expressed in the form:
𝑅𝑠𝑖𝑛(π‘₯ + Ξ±)
𝑅>0
0° < Ξ± < 90°
So:
3𝑠𝑖𝑛π‘₯ + 4π‘π‘œπ‘ π‘₯
= 5sin(π‘₯ + 53.1°)
𝑅𝑠𝑖𝑛(π‘₯ + Ξ±) = 𝑅𝑠𝑖𝑛π‘₯π‘π‘œπ‘ Ξ± + π‘…π‘π‘œπ‘ π‘₯𝑠𝑖𝑛α
3𝑠𝑖𝑛π‘₯ + 4π‘π‘œπ‘ π‘₯ = 𝑅𝑠𝑖𝑛π‘₯π‘π‘œπ‘ Ξ± + π‘…π‘π‘œπ‘ π‘₯𝑠𝑖𝑛α
π‘…π‘π‘œπ‘ Ξ± = 3
π‘π‘œπ‘ Ξ± =
𝑅𝑠𝑖𝑛α = 4
𝐴
𝐻
3
𝑅
𝑠𝑖𝑛α =
4
𝑅
𝑂
𝐻
So in the triangle, the Hypotenuse is R…
𝑅=
32 + 42
π‘π‘œπ‘ Ξ± =
π‘π‘œπ‘ Ξ± =
3
𝑅
Ξ± = 53.1°
Compare each term –
they must be equal!
𝑅
4
Ξ±
3
𝑅=5
R=5
3
5
Ξ± = π‘π‘œπ‘  βˆ’1
Replace with the
expression
3
5
Inverse Cos
Find the smallest value in the
acceptable range given
7D
Further Trigonometric Identities and their
Applications
You can write expressions of the
form acosΞΈ + bsinΞΈ, where a and
b are constants, as a sine or
cosine function only
𝑅𝑠𝑖𝑛(π‘₯ βˆ’ Ξ±) = 𝑅𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π›Ό βˆ’ π‘…π‘π‘œπ‘ π‘₯𝑠𝑖𝑛𝛼
𝑠𝑖𝑛π‘₯ βˆ’ 3π‘π‘œπ‘ π‘₯ = 𝑅𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π›Ό βˆ’ π‘…π‘π‘œπ‘ π‘₯𝑠𝑖𝑛𝛼
𝑅𝑠𝑖𝑛𝛼 = 3
π‘…π‘π‘œπ‘ π›Ό = 1
Show that you can express:
𝑠𝑖𝑛π‘₯ βˆ’ 3π‘π‘œπ‘ π‘₯
In the form:
𝑅>0
𝑅𝑠𝑖𝑛(π‘₯ βˆ’ Ξ±)
0<Ξ±<
πœ‹
2
𝑅=
12 +
3
π‘…π‘π‘œπ‘ π›Ό = 1
π‘π‘œπ‘ π›Ό =
𝑠𝑖𝑛π‘₯ βˆ’ 3π‘π‘œπ‘ π‘₯
= 2sin π‘₯ βˆ’
πœ‹
3
𝛼=
πœ‹
3
𝑅=2
Divide
by 2
1
2
𝛼 = π‘π‘œπ‘  βˆ’1
Compare each term –
they must be equal!
R=2
2π‘π‘œπ‘ π›Ό = 1
So:
2
Replace with the
expression
1
2
Inverse
cos
Find the smallest
value in the
acceptable range
7D
Further Trigonometric Identities and their
Applications
Sketch the graph of: 𝑠𝑖𝑛π‘₯ βˆ’ 3π‘π‘œπ‘ π‘₯
You can write expressions of the
form acosΞΈ + bsinΞΈ, where a and
b are constants, as a sine or
cosine function only
Show that you can express:
𝑠𝑖𝑛π‘₯ βˆ’ 3π‘π‘œπ‘ π‘₯
In the form:
𝑅𝑠𝑖𝑛(π‘₯ βˆ’ Ξ±)
𝑅>0
0<Ξ±<
πœ‹
2
So:
𝑠𝑖𝑛π‘₯ βˆ’ 3π‘π‘œπ‘ π‘₯
= 2sin π‘₯ βˆ’
πœ‹
2sin βˆ’
3
=βˆ’ 3
= Sketch the graph of: 2sin π‘₯ βˆ’
1
πœ‹
3
Ο€/
2
Ο€
3Ο€/
2
1
Ο€/
3
Ο€/
2
Ο€
4Ο€/
3
3Ο€/
2
πœ‹
3
2Ο€
y = 2sin π‘₯ βˆ’
1
-1
-2
2Ο€
y = sin π‘₯ βˆ’
2
At the yintercept,
x=0
Start out
with sinx
y = sin π‘₯
-1
-1
πœ‹
3
Ο€/
3
Ο€/
2
Ο€
4Ο€/
3
3Ο€/
2
2Ο€
πœ‹
3
Translate
Ο€/3 units
right
Vertical
stretch, scale
factor 2
7D
Further Trigonometric Identities and their
Applications
You can write expressions of the
form acosΞΈ + bsinΞΈ, where a and
b are constants, as a sine or
cosine function only
Express:
2π‘π‘œπ‘ πœƒ + 5π‘ π‘–π‘›πœƒ
in the form:
π‘…π‘π‘œπ‘ (πœƒ βˆ’ 𝛼)
𝑅>0
0° < 𝛼 < 90°
So:
2π‘π‘œπ‘ πœƒ + 5π‘ π‘–π‘›πœƒ
= 29cos(πœƒ βˆ’ 68.2)
π‘…π‘π‘œπ‘ (πœƒ βˆ’ 𝛼) = π‘…π‘π‘œπ‘ πœƒπ‘π‘œπ‘ π›Ό + π‘…π‘ π‘–π‘›πœƒπ‘ π‘–π‘›π›Ό
2π‘π‘œπ‘ πœƒ + 5π‘ π‘–π‘›πœƒ = π‘…π‘π‘œπ‘ πœƒπ‘π‘œπ‘ π›Ό + π‘…π‘ π‘–π‘›πœƒπ‘ π‘–π‘›π›Ό
π‘…π‘π‘œπ‘ π›Ό = 2
𝑅=
𝑅𝑠𝑖𝑛𝛼 = 5
22 +52
π‘…π‘π‘œπ‘ π›Ό = 2
29π‘π‘œπ‘ π›Ό = 2
π‘π‘œπ‘ π›Ό =
2
29
𝛼 = π‘π‘œπ‘  βˆ’1
𝛼 = 68.2
2
29
Replace with the
expression
Compare each term –
they must be equal!
𝑅 = 29
R = √29
Divide by
√29
Inverse
cos
Find the smallest
value in the
acceptable range
7D
Further Trigonometric Identities and their
Applications
You can write expressions of the
form acosΞΈ + bsinΞΈ, where a and
b are constants, as a sine or
cosine function only
29cos(πœƒ βˆ’ 68.2) = 3
Divide by √29
cos(πœƒ βˆ’ 68.2) =
3
29
Inverse Cos
Solve in the given range, the
following equation:
3
πœƒ βˆ’ 68.2 = π‘π‘œπ‘  βˆ’1
29
2π‘π‘œπ‘ πœƒ + 5π‘ π‘–π‘›πœƒ = 3
πœƒ βˆ’ 68.2 = 56.1, βˆ’56.1 , 303.9
0° < πœƒ < 360°
We just showed that the original equation can
be rewritten…
2π‘π‘œπ‘ πœƒ + 5π‘ π‘–π‘›πœƒ = 29cos(πœƒ βˆ’ 68.2)
Remember to work out
other values in the
adjusted range
Add 68.2 (and
put in order!)
πœƒ = 12.1 , 124.3
Hence, we can solve this equation instead!
29cos(πœƒ βˆ’ 68.2) = 3
0° < πœƒ < 360°
βˆ’68.2° < πœƒ βˆ’ 68.2 < 291.2°
-56.1
Remember to
adjust the
range for (ΞΈ –
68.2)
-90
56.1
90
303.9
180
270
y = CosΞΈ
360
7D
Further Trigonometric Identities and their
Applications
Rcos(ΞΈ – Ξ±) chosen as it
gives us the same form
as the expression
You can write expressions of the
form acosΞΈ + bsinΞΈ, where a and
b are constants, as a sine or
cosine function only
π‘…π‘π‘œπ‘ (πœƒ βˆ’ 𝛼) = π‘…π‘π‘œπ‘ πœƒπ‘π‘œπ‘ π›Ό + π‘…π‘ π‘–π‘›πœƒπ‘ π‘–π‘›π›Ό
12π‘π‘œπ‘ πœƒ + 5π‘ π‘–π‘›πœƒ = π‘…π‘π‘œπ‘ πœƒπ‘π‘œπ‘ π›Ό + π‘…π‘ π‘–π‘›πœƒπ‘ π‘–π‘›π›Ό
π‘…π‘π‘œπ‘ π›Ό = 12
Find the maximum value of the
following expression, and the
smallest positive value of ΞΈ at which
it arises:
12π‘π‘œπ‘ πœƒ + 5π‘ π‘–π‘›πœƒ
= 13cos(πœƒ βˆ’ 22.6)
13cos(πœƒ βˆ’ 22.6)
13(1)
π‘€π‘Žπ‘₯ = 13
πœƒ βˆ’ 22.6 = 0
πœƒ = 22.6
Max value of
cos(ΞΈ - 22.6) = 1
Overall maximum
therefore = 13
Cos peaks at 0
ΞΈ = 22.6 gives us 0
𝑅=
𝑅𝑠𝑖𝑛𝛼 = 5
122 +52
π‘…π‘π‘œπ‘ π›Ό = 12
13π‘π‘œπ‘ π›Ό = 12
12
π‘π‘œπ‘ π›Ό =
13
𝛼 = π‘π‘œπ‘  βˆ’1
𝛼 = 22.6
12
13
Replace with the
expression
Compare each term –
they must be equal!
𝑅 = 13
R = 13
Divide by 13
Inverse
cos
Find the smallest
value in the
acceptable range
7D
Further Trigonometric Identities and their
Applications
You can write expressions of the
form acosΞΈ + bsinΞΈ, where a and
b are constants, as a sine or
cosine function only
π‘Žπ‘ π‘–π‘›πœƒ ± π‘π‘π‘œπ‘ πœƒ
𝑅𝑠𝑖𝑛 πœƒ ± 𝛼
π‘Žπ‘π‘œπ‘ πœƒ ± π‘π‘ π‘–π‘›πœƒ
π‘…π‘π‘œπ‘  πœƒ βˆ“ 𝛼
Whichever ratio is at the start, change the expression into
a function of that (This makes solving problems easier)
Remember to get the + or – signs the correct way round!
7D
Further Trigonometric Identities and their
Applications
You can express sums and differences of
sines and cosines as products of sines
and cosines by using the β€˜factor
formulae’
𝑠𝑖𝑛𝑃 + 𝑠𝑖𝑛𝑄 = 2𝑠𝑖𝑛
𝑃+𝑄
π‘ƒβˆ’π‘„
π‘π‘œπ‘ 
2
2
𝑃+𝑄
π‘ƒβˆ’π‘„
𝑠𝑖𝑛𝑃 βˆ’ 𝑠𝑖𝑛𝑄 = 2π‘π‘œπ‘ 
𝑠𝑖𝑛
2
2
π‘π‘œπ‘ π‘ƒ + π‘π‘œπ‘ π‘„ = 2π‘π‘œπ‘ 
𝑃+𝑄
π‘ƒβˆ’π‘„
π‘π‘œπ‘ 
2
2
π‘π‘œπ‘ π‘ƒ βˆ’ π‘π‘œπ‘ π‘„ = βˆ’2𝑠𝑖𝑛
𝑃+𝑄
π‘ƒβˆ’π‘„
𝑠𝑖𝑛
2
2
You get given all these in the
formula booklet!
7E
Further Trigonometric Identities and their
Applications
Using the formulae for Sin(A + B) and Sin (A – B),
derive the result that:
You can express sums and differences of
sines and cosines as products of sines
and cosines by using the β€˜factor
formulae’
𝑃+𝑄
π‘ƒβˆ’π‘„
𝑠𝑖𝑛𝑃 + 𝑠𝑖𝑛𝑄 = 2𝑠𝑖𝑛
π‘π‘œπ‘ 
2
2
𝑠𝑖𝑛𝑃 βˆ’ 𝑠𝑖𝑛𝑄 = 2π‘π‘œπ‘ 
2) 𝑆𝑖𝑛 𝐴 βˆ’ 𝐡 = π‘ π‘–π‘›π΄π‘π‘œπ‘ π΅ βˆ’ π‘π‘œπ‘ π΄π‘ π‘–π‘›π΅
𝑆𝑖𝑛 𝐴 + 𝐡 + 𝑠𝑖𝑛(𝐴 βˆ’ 𝐡) = 2π‘ π‘–π‘›π΄π‘π‘œπ‘ π΅
𝑆𝑖𝑛 𝐴 + 𝐡 + 𝑠𝑖𝑛(𝐴 βˆ’ 𝐡) = 2π‘ π‘–π‘›π΄π‘π‘œπ‘ π΅
𝑃+𝑄
π‘ƒβˆ’π‘„
𝑆𝑖𝑛𝑃 + 𝑆𝑖𝑛𝑄 = 2𝑠𝑖𝑛
π‘π‘œπ‘ 
2
2
Add both sides
together (1 + 2)
Let (A+B) = P
Let (A-B) = Q
𝑃+𝑄
π‘ƒβˆ’π‘„
π‘π‘œπ‘ π‘ƒ + π‘π‘œπ‘ π‘„ = 2π‘π‘œπ‘ 
π‘π‘œπ‘ 
2
2
𝑃+𝑄
π‘ƒβˆ’π‘„
𝑠𝑖𝑛
2
2
𝑃+𝑄
π‘ƒβˆ’π‘„
π‘π‘œπ‘ 
2
2
1) 𝑆𝑖𝑛 𝐴 + 𝐡 = π‘ π‘–π‘›π΄π‘π‘œπ‘ π΅ + π‘π‘œπ‘ π΄π‘ π‘–π‘›π΅
𝑃+𝑄
π‘ƒβˆ’π‘„
𝑠𝑖𝑛
2
2
π‘π‘œπ‘ π‘ƒ βˆ’ π‘π‘œπ‘ π‘„ = βˆ’2𝑠𝑖𝑛
𝑠𝑖𝑛𝑃 + 𝑠𝑖𝑛𝑄 = 2𝑠𝑖𝑛
1)
𝐴+𝐡 =𝑃
2)
π΄βˆ’π΅ =𝑄
2𝐴 = 𝑃 + 𝑄
𝐴=
𝑃+𝑄
2
1+2
Divide
by 2
1)
𝐴+𝐡 =𝑃
2)
π΄βˆ’π΅ =𝑄
2𝐡 = 𝑃 βˆ’ 𝑄
π‘ƒβˆ’π‘„
𝐡=
2
1-2
Divide
by 2
7E
Further Trigonometric Identities and their
Applications
Show that:
You can express sums and differences of
sines and cosines as products of sines
and cosines by using the β€˜factor
formulae’
𝑠𝑖𝑛𝑃 + 𝑠𝑖𝑛𝑄 = 2𝑠𝑖𝑛
𝑠𝑖𝑛𝑃 βˆ’ 𝑠𝑖𝑛𝑄 = 2π‘π‘œπ‘ 
π‘π‘œπ‘ π‘ƒ + π‘π‘œπ‘ π‘„ = 2π‘π‘œπ‘ 
𝑃+𝑄
π‘ƒβˆ’π‘„
π‘π‘œπ‘ 
2
2
𝑃+𝑄
π‘ƒβˆ’π‘„
𝑠𝑖𝑛
2
2
𝑃+𝑄
π‘ƒβˆ’π‘„
π‘π‘œπ‘ 
2
2
𝑃+𝑄
π‘ƒβˆ’π‘„
π‘π‘œπ‘ π‘ƒ βˆ’ π‘π‘œπ‘ π‘„ = βˆ’2𝑠𝑖𝑛
𝑠𝑖𝑛
2
2
𝑠𝑖𝑛𝑃 βˆ’ 𝑠𝑖𝑛𝑄 = 2π‘π‘œπ‘ 
𝑠𝑖𝑛105 βˆ’ 𝑠𝑖𝑛15 =
𝑃+𝑄
π‘ƒβˆ’π‘„
𝑠𝑖𝑛
2
2
𝑠𝑖𝑛105 βˆ’ 𝑠𝑖𝑛15 = 2π‘π‘œπ‘ 
105 + 15
105 βˆ’ 15
𝑠𝑖𝑛
2
2
𝑠𝑖𝑛105 βˆ’ 𝑠𝑖𝑛15 = 2π‘π‘œπ‘ 60𝑠𝑖𝑛45
𝑠𝑖𝑛105 βˆ’ 𝑠𝑖𝑛15 = 2 ×
𝑠𝑖𝑛105 βˆ’ 𝑠𝑖𝑛15 =
1
1
1
1
×
2
2
2
P = 105
Q = 15
Work out the
fraction parts
Sub in values for
Cos60 and Sin45
Work out the
right hand side
2
7E
Further Trigonometric Identities and their
Applications
Solve in the range indicated:
You can express sums and differences of
𝑠𝑖𝑛4πœƒ βˆ’ 𝑠𝑖𝑛3πœƒ = 0
0β‰€πœƒβ‰€πœ‹
sines and cosines as products of sines
and cosines by using the β€˜factor
𝑃+𝑄
π‘ƒβˆ’π‘„
𝑠𝑖𝑛𝑃 βˆ’ 𝑠𝑖𝑛𝑄 = 2π‘π‘œπ‘ 
𝑠𝑖𝑛
formulae’
2
𝑃+𝑄
π‘ƒβˆ’π‘„
𝑠𝑖𝑛𝑃 + 𝑠𝑖𝑛𝑄 = 2𝑠𝑖𝑛
π‘π‘œπ‘ 
2
2
𝑠𝑖𝑛4πœƒ βˆ’ 𝑠𝑖𝑛3πœƒ = 2π‘π‘œπ‘ 
4πœƒ + 3πœƒ
4πœƒ βˆ’ 3πœƒ
𝑠𝑖𝑛
2
2
𝑠𝑖𝑛4πœƒ βˆ’ 𝑠𝑖𝑛3πœƒ = 2π‘π‘œπ‘ 
7πœƒ
πœƒ
𝑠𝑖𝑛
2
2
𝑃+𝑄
π‘ƒβˆ’π‘„
𝑠𝑖𝑛𝑃 βˆ’ 𝑠𝑖𝑛𝑄 = 2π‘π‘œπ‘ 
𝑠𝑖𝑛
2
2
π‘π‘œπ‘ π‘ƒ + π‘π‘œπ‘ π‘„ = 2π‘π‘œπ‘ 
𝑃+𝑄
π‘ƒβˆ’π‘„
π‘π‘œπ‘ 
2
2
2π‘π‘œπ‘ 
𝑃+𝑄
π‘ƒβˆ’π‘„
π‘π‘œπ‘ π‘ƒ βˆ’ π‘π‘œπ‘ π‘„ = βˆ’2𝑠𝑖𝑛
𝑠𝑖𝑛
2
2
0β‰€πœƒβ‰€πœ‹
π‘π‘œπ‘ 
Adjust the
range
7πœƒ 7πœ‹
0≀
≀
2
2
Ο€/
2
Ο€
3Ο€/
2
7πœƒ
πœƒ
𝑠𝑖𝑛
=0
2
2
7πœƒ
=0
2
7πœƒ
= π‘π‘œπ‘  βˆ’1 0
2
0
2Ο€
y = CosΞΈ
2
7πœƒ πœ‹ 3πœ‹ 5πœ‹ 7πœ‹
,
= ,
,
2
2 2 2 2
πœ‹ 3πœ‹ 5πœ‹
πœƒ= ,
,
,πœ‹
7 7 7
P = 4ΞΈ
Q = 3ΞΈ
Work out
the
fractions
Set equal
to 0
Either the cos or sin
part must equal 0…
Inverse cos
Solve, remembering to take into account the
different range
Once you have all the values from 0-2Ο€, add
2Ο€ to them to obtain equivalents…
Multiply by 2 and divide by 7
7E
Further Trigonometric Identities and their
Applications
Solve in the range indicated:
You can express sums and differences of
𝑠𝑖𝑛4πœƒ βˆ’ 𝑠𝑖𝑛3πœƒ = 0
0β‰€πœƒβ‰€πœ‹
sines and cosines as products of sines
and cosines by using the β€˜factor
𝑃+𝑄
π‘ƒβˆ’π‘„
𝑠𝑖𝑛𝑃 βˆ’ 𝑠𝑖𝑛𝑄 = 2π‘π‘œπ‘ 
𝑠𝑖𝑛
formulae’
2
𝑃+𝑄
π‘ƒβˆ’π‘„
𝑠𝑖𝑛𝑃 + 𝑠𝑖𝑛𝑄 = 2𝑠𝑖𝑛
π‘π‘œπ‘ 
2
2
𝑠𝑖𝑛4πœƒ βˆ’ 𝑠𝑖𝑛3πœƒ = 2π‘π‘œπ‘ 
4πœƒ + 3πœƒ
4πœƒ βˆ’ 3πœƒ
𝑠𝑖𝑛
2
2
𝑠𝑖𝑛4πœƒ βˆ’ 𝑠𝑖𝑛3πœƒ = 2π‘π‘œπ‘ 
7πœƒ
πœƒ
𝑠𝑖𝑛
2
2
𝑃+𝑄
π‘ƒβˆ’π‘„
𝑠𝑖𝑛𝑃 βˆ’ 𝑠𝑖𝑛𝑄 = 2π‘π‘œπ‘ 
𝑠𝑖𝑛
2
2
π‘π‘œπ‘ π‘ƒ + π‘π‘œπ‘ π‘„ = 2π‘π‘œπ‘ 
𝑃+𝑄
π‘ƒβˆ’π‘„
π‘π‘œπ‘ 
2
2
0β‰€πœƒβ‰€πœ‹
0
Ο€/
2
𝑠𝑖𝑛
Adjust the
range
πœƒ πœ‹
0≀ ≀
2 2
Ο€
3Ο€/
2
7πœƒ
πœƒ
𝑠𝑖𝑛
=0
2
2
2π‘π‘œπ‘ 
𝑃+𝑄
π‘ƒβˆ’π‘„
π‘π‘œπ‘ π‘ƒ βˆ’ π‘π‘œπ‘ π‘„ = βˆ’2𝑠𝑖𝑛
𝑠𝑖𝑛
2
2
πœƒ
=0
2
πœƒ
= π‘ π‘–π‘›βˆ’1 0
2
2Ο€
y = SinΞΈ
2
πœƒ
=0
2
πœƒ=0
P = 4ΞΈ
Q = 3ΞΈ
Work out
the
fractions
Set equal
to 0
Either the cos or sin
part must equal 0…
Inverse sin
Solve, remembering to take into account the
different range
Once you have all the values from 0-2Ο€, add
2Ο€ to them to obtain equivalents
Multiply by 2
7E
Further Trigonometric Identities and their
Applications
You can express sums and differences of
sines and cosines as products of sines
and cosines by using the β€˜factor
formulae’
𝑠𝑖𝑛𝑃 + 𝑠𝑖𝑛𝑄 = 2𝑠𝑖𝑛
𝑃+𝑄
π‘ƒβˆ’π‘„
π‘π‘œπ‘ 
2
2
𝑠𝑖𝑛𝑃 βˆ’ 𝑠𝑖𝑛𝑄 = 2π‘π‘œπ‘ 
𝑃+𝑄
π‘ƒβˆ’π‘„
𝑠𝑖𝑛
2
2
𝑃+𝑄
π‘ƒβˆ’π‘„
π‘π‘œπ‘ π‘ƒ + π‘π‘œπ‘ π‘„ = 2π‘π‘œπ‘ 
π‘π‘œπ‘ 
2
2
π‘π‘œπ‘ π‘ƒ βˆ’ π‘π‘œπ‘ π‘„ = βˆ’2𝑠𝑖𝑛
𝑃+𝑄
π‘ƒβˆ’π‘„
𝑠𝑖𝑛
2
2
Prove that:
𝑠𝑖𝑛 π‘₯ + 2𝑦 + 𝑠𝑖𝑛 π‘₯ + 𝑦 + 𝑠𝑖𝑛π‘₯
= π‘‘π‘Žπ‘›(π‘₯ + 𝑦)
π‘π‘œπ‘  π‘₯ + 2𝑦 + π‘π‘œπ‘  π‘₯ + 𝑦 + π‘π‘œπ‘ π‘₯
Numerator:
In the numerator:
𝑠𝑖𝑛 π‘₯ + 2𝑦 + 𝑠𝑖𝑛 π‘₯ + 𝑦 + 𝑠𝑖𝑛π‘₯
𝑠𝑖𝑛 π‘₯ + 2𝑦 + 𝑠𝑖𝑛π‘₯
Ignore sin(x + y)
for now…
𝑃+𝑄
π‘ƒβˆ’π‘„
𝑠𝑖𝑛𝑃 + 𝑠𝑖𝑛𝑄 = 2𝑠𝑖𝑛
π‘π‘œπ‘ 
2
2
𝑠𝑖𝑛(π‘₯ + 2𝑦) + 𝑠𝑖𝑛π‘₯ = 2𝑠𝑖𝑛
Use the identity
for adding 2 sines
π‘₯ + 2𝑦 + π‘₯
π‘₯ + 2𝑦 βˆ’ π‘₯
π‘π‘œπ‘ 
2
2
= 2 𝑠𝑖𝑛 π‘₯ + 𝑦 π‘π‘œπ‘ π‘¦
= 2 𝑠𝑖𝑛 π‘₯ + 𝑦 π‘π‘œπ‘ π‘¦ + 𝑠𝑖𝑛(π‘₯ + 𝑦)
P = x + 2y
Q=x
Simplify
Fractions
Bring back the sin(x + y)
we ignored earlier
Factorise
= 𝑠𝑖𝑛 π‘₯ + 𝑦 (2π‘π‘œπ‘ π‘¦ + 1)
𝑠𝑖𝑛 π‘₯ + 𝑦 (2π‘π‘œπ‘ π‘¦ + 1)
7E
Further Trigonometric Identities and their
Applications
You can express sums and differences of
sines and cosines as products of sines
and cosines by using the β€˜factor
formulae’
𝑠𝑖𝑛𝑃 + 𝑠𝑖𝑛𝑄 = 2𝑠𝑖𝑛
𝑃+𝑄
π‘ƒβˆ’π‘„
π‘π‘œπ‘ 
2
2
𝑠𝑖𝑛𝑃 βˆ’ 𝑠𝑖𝑛𝑄 = 2π‘π‘œπ‘ 
𝑃+𝑄
π‘ƒβˆ’π‘„
𝑠𝑖𝑛
2
2
𝑃+𝑄
π‘ƒβˆ’π‘„
π‘π‘œπ‘ π‘ƒ + π‘π‘œπ‘ π‘„ = 2π‘π‘œπ‘ 
π‘π‘œπ‘ 
2
2
π‘π‘œπ‘ π‘ƒ βˆ’ π‘π‘œπ‘ π‘„ = βˆ’2𝑠𝑖𝑛
𝑃+𝑄
π‘ƒβˆ’π‘„
𝑠𝑖𝑛
2
2
Prove that:
𝑠𝑖𝑛 π‘₯ + 2𝑦 + 𝑠𝑖𝑛 π‘₯ + 𝑦 + 𝑠𝑖𝑛π‘₯
= π‘‘π‘Žπ‘›(π‘₯ + 𝑦)
π‘π‘œπ‘  π‘₯ + 2𝑦 + π‘π‘œπ‘  π‘₯ + 𝑦 + π‘π‘œπ‘ π‘₯
Numerator:
In the denominator:
π‘π‘œπ‘  π‘₯ + 2𝑦 + π‘π‘œπ‘  π‘₯ + 𝑦 + π‘π‘œπ‘ π‘₯
π‘π‘œπ‘  π‘₯ + 2𝑦 + π‘π‘œπ‘ π‘₯
Ignore cos(x + y)
for now…
𝑃+𝑄
π‘ƒβˆ’π‘„
π‘π‘œπ‘ π‘ƒ + π‘π‘œπ‘ π‘„ = 2π‘π‘œπ‘ 
π‘π‘œπ‘ 
2
2
π‘π‘œπ‘ (π‘₯ + 2𝑦) + π‘π‘œπ‘ π‘₯ = 2π‘π‘œπ‘ 
Use the identity for
adding 2 cosines
π‘₯ + 2𝑦 + π‘₯
π‘₯ + 2𝑦 βˆ’ π‘₯
π‘π‘œπ‘ 
2
2
= 2 π‘π‘œπ‘  π‘₯ + 𝑦 π‘π‘œπ‘ π‘¦
= 2 π‘π‘œπ‘  π‘₯ + 𝑦 π‘π‘œπ‘ π‘¦ + π‘π‘œπ‘ (π‘₯ + 𝑦)
P = x + 2y
Q=x
Simplify
Fractions
Bring back the cos(x + y)
we ignored earlier
Factorise
= π‘π‘œπ‘  π‘₯ + 𝑦 (2π‘π‘œπ‘ π‘¦ + 1)
𝑠𝑖𝑛 π‘₯ + 𝑦 (2π‘π‘œπ‘ π‘¦ + 1)
Denominator: π‘π‘œπ‘  π‘₯ + 𝑦 (2π‘π‘œπ‘ π‘¦ + 1)
7E
Further Trigonometric Identities and their
Applications
You can express sums and differences of
sines and cosines as products of sines
and cosines by using the β€˜factor
formulae’
𝑠𝑖𝑛𝑃 + 𝑠𝑖𝑛𝑄 = 2𝑠𝑖𝑛
𝑃+𝑄
π‘ƒβˆ’π‘„
π‘π‘œπ‘ 
2
2
𝑠𝑖𝑛𝑃 βˆ’ 𝑠𝑖𝑛𝑄 = 2π‘π‘œπ‘ 
𝑃+𝑄
π‘ƒβˆ’π‘„
𝑠𝑖𝑛
2
2
𝑃+𝑄
π‘ƒβˆ’π‘„
π‘π‘œπ‘ π‘ƒ + π‘π‘œπ‘ π‘„ = 2π‘π‘œπ‘ 
π‘π‘œπ‘ 
2
2
π‘π‘œπ‘ π‘ƒ βˆ’ π‘π‘œπ‘ π‘„ = βˆ’2𝑠𝑖𝑛
𝑠𝑖𝑛 π‘₯ + 2𝑦 + 𝑠𝑖𝑛 π‘₯ + 𝑦 + 𝑠𝑖𝑛π‘₯
π‘π‘œπ‘  π‘₯ + 2𝑦 + π‘π‘œπ‘  π‘₯ + 𝑦 + π‘π‘œπ‘ π‘₯
=
=
𝑠𝑖𝑛(π‘₯ + 𝑦)(2π‘π‘œπ‘ π‘¦ + 1)
π‘π‘œπ‘ (π‘₯ + 𝑦)(2π‘π‘œπ‘ π‘¦ + 1)
𝑠𝑖𝑛(π‘₯ + 𝑦)
π‘π‘œπ‘ (π‘₯ + 𝑦)
Replace the
numerator and
denominator
Cancel out the
(2cosy + 1) brackets
Use one of the
identities from C2
= π‘‘π‘Žπ‘›(π‘₯ + 𝑦)
𝑃+𝑄
π‘ƒβˆ’π‘„
𝑠𝑖𝑛
2
2
Prove that:
𝑠𝑖𝑛 π‘₯ + 2𝑦 + 𝑠𝑖𝑛 π‘₯ + 𝑦 + 𝑠𝑖𝑛π‘₯
= π‘‘π‘Žπ‘›(π‘₯ + 𝑦)
π‘π‘œπ‘  π‘₯ + 2𝑦 + π‘π‘œπ‘  π‘₯ + 𝑦 + π‘π‘œπ‘ π‘₯
Numerator:
𝑠𝑖𝑛 π‘₯ + 𝑦 (2π‘π‘œπ‘ π‘¦ + 1)
Denominator: π‘π‘œπ‘  π‘₯ + 𝑦 (2π‘π‘œπ‘ π‘¦ + 1)
7E
Summary
β€’ We have extended the range of techniques
we have for solving trigonometrical equations
β€’ We have seen how to combine functions
involving sine and cosine into a single
transformation of sine or cosine
β€’ We have learnt several new identities