Transition Metal Complexes of Topologically Constrained
Download
Report
Transcript Transition Metal Complexes of Topologically Constrained
Transition Metal Complexes of
Topologically Constrained
Tetraazamacrocycles
Tim Hubin
Chemistry Department
University of Kansas
Motivation: Aqueous Oxidation Catalysts
Consumer
Product Applications (Procter & Gamble)
– Laundry Detergents
– Hard-Surface Cleaners
}
H2O2 oxidation of soils and stains
Industrial Applications
– Pulp Bleaching
– Synthetic Organic Oxidations
Primary Advantages
– Environmentally Friendly Solvent/Oxidants
– Inexpensive Solvent
Challenges to Aqueous Oxidations
Solubility
– Applications require aqueous/organic solubility
– Water soluble substrates or biphasic reactions
Catalyst
Decomposition
– Transition Metal Complexes decompose in H+ or OH» Acidic Conditions
R3N
M
H+
R3NH+
+
M
» Basic Conditions
R3N
M
OH-
R3N
+
M(OH)n
» Oxygenated Conditions
R3N
M
O2/H2O
R3N
+
MxOy (Examples: MnO2 or Fe2O3)
Overall Project Goals
Design
and Synthesize Ligands to stabilize transition
metal ions in harsh aqueous conditions
Synthesize and Characterize transition metal
complexes of the ligands (Mn and Fe preferred)
Evaluate complexes as oxidation catalysts in pH 10
water with H2O2 or O2 as oxidant
Determine mechanism(s) and preferred substrates of
active catalysts
Redesign Ligands for improved activity
Metal-Ligand Binding Affinity
Complementarity:
match between metal and ligand
leading to molecular recognition (minimum for strong
binding)
– size
– geometry
– electronics
O
O
O
K+
O
O
O
Constraint:
factors reducing freedom in ligand
systems and leading to optimization of binding
affinity if complementarity is maintained
– topology--connectedness of donor atoms in a ligand
– rigidity--inflexibility or fixedness of donor atoms in a
ligand
Topological and Rigidity Effects
NH2
NH
NH3
NH
HN
NH
HN HN
NH
HN
NH
HN HN
HN
NH2
NH2 H2N
Increasing Topological Contraint and Complex Stability
H2N
NH2
N
N
N
Increasing Rigidity and Complex Stability
N
Cross-Bridged Tetraazamacrocycles
CH3
H3C
N
N
N
N
Topologically constrained like a cryptate
Short cross-bridge rigidifies the macrocycle
Tunable: ring size and Me group can be
modified
Simple, high yielding organic synthesis
Leaves octahedral metal ions coordinatively
unsaturated
Neutral ligand giving charged complexes
Resistant to oxidation
– Tertiary amines
– Saturated
Secondary Goals
Understand
ligand synthesis
Apply synthesis to other macrocycles
Explore coordination chemistry of rigid intermediates
Quantify solution behavior of ligands
– Proton Sponges
Overcome
proton sponge problem to develop
coordination chemistry of cross-bridged ligands
Fully characterize complexes--structure,
spectroscopy, electrochemistry, solution behavior
Ligand Synthesis
O
n
NH HN
O
H
H
CH3CN
NH HN
N
N
H
H
N
N+
R
H
N
RX
n = 0 or 1 independently
RX = MeI or BnBr
CH3CN
N
n
n
H
n
n
n
R
N+
N
NaBH4
2X
-
N
N
N
N
95% EtOH
R
if R = Bn
Pd/C, H2
n
N
HN
HOAc
NH
N
R
n
n
Reference: Weisman, G. R.; Wong, E. H.; Hill, D. C.; Rogers, M. E.; Reed, D. P.;
Calabrese, J. C. J. Chem. Soc., Chem. Commun. 1996, 947.
n
Ligands and Abbreviations
N
N
N
N
CH3
N
N
N
N
N
NH
HN
N
CH3
Me2(B14N4)
N
N
N
N
Bn2(B14N4)
H2(B14N4)
CH3
N
N
N
N
N
NH
HN
N
CH3
Me2(B12N4)
Bn2(B12N4)
N
N
N
N
CH3
H2(B12N4)
N
N
N
N
CH3
CH3
CH3
Me2(B13N4)
Me2(B14N4Me6)
Me2(B14N4) Synthesis
H2(Q14N4)2+
Me(Q14N4)+
HMe(Q14N4)2+
Me2(Q14N4)2+
H2Me2(B14N4)2+
Coordination Chemistry of Q#N4
Tetracyclic
PdII,
intermediates not yet used as ligands
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
CuI, and CuII can coordinate
Cu(Q12N4)Cl2
Cu(Q13N4)Cl2
Cu(Q14N4)Cl2
Cu(iso-Q14N4)Cl2
Solution Behavior of Cross-Bridged Ligands
Potentiometric
titrations confirm proton sponge
behavior
– B14N4: pKa2 = 9.58, pKa1 = ?
– B14N4Me6: pKa2 = 11.45, pKa1 = ?
12
11
10
9
8
pH
Observed
7
Calculated
6
5
4
H2Me2(B14N4Me6
)2+
3
2
-2.15
-1.15
-0.15
0.85
Equivalents Base
1.85
2.85
3.85
Overcoming the Proton Sponge Problem
n
N
+
NH
R
HN
+
N
n
1. Extraction from
pH = 14 water
N
2. Vacuum distillation
from KOH
N
R
R
N
N
MSaX2
N
anhydrous, anaerobic,
aprotic solvent
R
R
n
n
Proton Sponges
Free Ligands
N
X
M
X
N
N
R
Transition Metal
Complexes
Metal Complexes:
Macrocycle Rings
12, 13, 14, 14Me6
R-groups
Me, Bn, H
J. Chem. Soc., Chem. Commun., 1998, 1675.
Metals
Cr, Mn, Fe, Co
Ni, Cu, Zn, Pd
Crystallographic Characterization
Co(Me2B12N4)Cl2
[Ni(Me2B14N4)(acac)]+
Fe(Bn2B12N4)Cl2
Me2B14N4Me6 Forces Pentacoordination
Co(Me2B14N4Me6)Cl+
Kinetic Stability of Complexes
Basic Conditions (1 M KOH)
– FeII/MnII complexes--several days for any oxides to form
– MnII(Me2B14N4)Cl2--isolated MnIII intact complex
Acidic
Conditions (1 M HClO4)
Metal
MnII
Ligand
Me2B14N4
Me2B12N4
t1/2
13.8 h
< 15 min
ZnII
Me2B14N4
Me2B13N4
Me2B12N4
3.9 h
0.3 h
0.8 h
CuII
Me2B14N4Me6
Me2B14N4
Me2B13N4
Me2B12N4
> 8 yr
> 6 yr
>8 yr
30 h
Metal
MnII
Ligand
porph
14N4Me6
t1/2
74 x 10-6 s
<1s
CuII
Me414N4
2s
cis-14N4Me6
2s
trans-14N4Me6 22 d
Electrochemical Studies
Ligands
stabilize metal
in multiple ox. states
Cyclic Voltammetry of Me2B14N4 Complexes
CuII
NiII
Ring-size
effect--larger
ring increases ox. pot.
N-Substituent
CoII
effect--
FeII
– R = Me, Bn approx. same
– R = H lowers ox. pot.
2
MnII
1.5
1
0.5
0
-0.5
Potential (V) vs SHE
-1
-1.5
-2
-2.5
Electronic Spectra--Ligand Field Strength
NiII complexes allow
approximation of Do
Cross-bridged ligands do
not have stronger M-N
bonds than simple
macrocycles
Observed kinetic stability
likely comes from
topological constraint and
rigidity, not strong M-N
bonds
0.01 M Ni(Bcyclen)Cl2 in DMF
Absorbance
0.4
0.3
0.2
0.1
0
300
500
700
900
1100
Wavelength (nm)
Octahedral approximation
Ni(Me2(B14N4))Cl2 Do = 10,215 cm-1
Ni(Me2(B12N4))Cl2 Do = 9,843 cm-1
Ni(cis-13N4)Cl2
Do = 11,110 cm-1
Ni(trans-14N4)Cl2
Dqxy = 14,870 cm-1
Oxidation Catalysis
MII complexes were screened initially on the
blue dye “Direct Blue 1” pH 10, H2O2 oxidant
Several
NH2 OH
NaO3S
OH
N
N
N
CH3O
SO3Na
N
SO 3Na
???
Pink>>>>Colorless
OCH3
SO3Na
Deep Blue
MnII best metal
Substrate
NH2
Me2(B14N4) best ligand
Oxidations (Dr. Maria Buchalova)
– Alkene Epoxidation--poor catalyst
catalyst
H2O2
O
– H-atom Abstraction--effective catalyst
catalyst
H2O2
Patent Applications: WO 98/39098
WO 98/39406
Higher Valent Complexes
Oxidation
Mechanism(s), while still under
investigation, likely involve higher oxidation states
– MnIII Complexes
PF6-
Mn(Me2(B14N4))Cl2 + Br2
[Mn(Me2(B14N4))Cl2]PF6
MeOH
11.0
10.0
+1.343(76)
9.0
8.0
pKa2 = 5.87(2)
p[H+]
7.0
6.0
5.0
4.0
+0.582(72)
pKa1 = 1.6(2)
3.0
2.0
-4.00
1.600
-3.00
-2.00
-1.00
0.00
Equivalents Base
1.00
2.00
3.00
1.400
1.200
1.000
0.800
0.600
Potential (V)
0.400
0.200
0.000
Dimerization of High Valent Mn
Oxidized
synthetic Mn complexes often dimerize
with m-oxo or m-hydroxo bridges
OH2
HN
Mn
oxidant
OH2
HN
NH
NH
NH
O
HN
Mn
Mn
O
HN
NH
NH
NH
NH
NH
MnIII/MnIV dimer
has characteristic
16-line EPR spectra,
green color
For
cross-bridged ligands: No dimers if R = Bn or
Me, but green complex in air if R = H
Mn(H2(B12N4))Cl2 + Air
1500
2500
3500
4500
5500
MnIII Complexes
Attempted
Dimerization
Mn(Me2(B14N4))Cl2 +
OH-
PF6-
[Mn(Me2(B14N4))(OAc)(OH)]PF6
H2O/EtOH
+0.505 (62)
-0.689(132)
Mn-OH = 1.812(4)
(1.816(4) and 1.827(3) literature)
IR: 3649 cm-1 (M-OH)
0.800
0.600
0.400
0.200
0.000
-0.200
Potential (V)
-0.400
-0.600
-0.800
-1.000
Summary
Overall Goals
4 Design and synthesize Ligands
4 Synthesize and characterize
transition metal complexes
4 Evaluate complexes as oxidation
catalysts
* Determine mechanism(s)
* Redesign Ligands
Secondary Goals
4 Understand ligand synthesis
4 Apply it to other macrocycles
4 Explore coordination chemistry of
rigid intermediates
(4) Quantify solution behavior of
ligands (Proton Sponges)
4 Overcome proton sponge problem
to develop coordination chemistry
of cross-bridged ligands
(4) Fully characterize complexes-structure, spectroscopy,
electrochemistry, solution
behavior
Acknowledgments
Prof. Daryle H. Busch and Busch Research Group
Aqueous Oxidation Subgroup
Synthesis:
Dr. Simon Collinson
Tim Hubin
Dr. Jim McCormick
Dr. Nickolay Tyryshkin
Collaborators
Dr. Chris Perkins (P & G)
George Hiler (P & G)
Physical Methods: Dr. Jim McCormick
Tim Hubin
Dr. Nathaniel W. Alcock (Warwick)
Dr. Howard J. Clase (Warwick)
Dr. Pawan K. Kahol (WSU)
Dr. Ahasuya Raghunathan (WSU)
Dr. Martha Morton (KU)
Mechanism:
Dr. Regine Labeque (P & G)
Dr. Maria Buchalova
Dr. Jim McCormick
$$$
Procter & Gamble
Madison A. and Lila Graduate Fellowship of KU
Topological Effects: chelate to cryptate
Increased
M/L Affinity with increased topological
constraint
NH2
NH
NH3
NH
HN
NH
HN HN
NH
HN
NH
HN HN
HN
NH2
NH2 H2N
Thermodynamic
Causes
– Entropy Increased
M
H2N
H2N
NH3
+
M
+
NH3
H2N
2 NH3
H2N
– N affinity for M+-- RNH2 binds more strongly than NH3
More Topological Effects
M
Thermodynamic Causes
– Preorganization--less motion
needed for a metal to ligate a
macrocycle than a linear
polyamine
H2N
NH HN
N
H
NH2
N
H
M
NH HN
Kinetic Causes
– High Effective Concentration
=> fast ring closure
– For Macrocycles and
Cryptates, slow ring opening
is due to deformations
required (no end group)
N
N
M
fast
N
M
N
N
N
N
N
M
N
N
N
M
N
N
M
N
N
N
Rigidity Effects
A rigid,
preorganized structure requires little
rearrangement to bind a metal ion (thermodynamic)
More
rigid structures make deformations needed for
stepwise dissociation more difficult (kinetic)
H2N
NH2
N
N
N
Increasing Rigidity and Complex Stability
N
Considerations for Catalytic Systems
Open
Coordination Site(s) on M for oxidant/substrate
binding
Multiple oxidation states of M accessible, but not too
stable for any single oxidation state
Ligand must be resistant to oxidation
Resulting Complexes should be water soluble
– Neutral ligand (cationic complex)
– Lack of “greasy” groups
Organic
Solubility desirable
– Biphasic oxidations of organic molecules
– Surface cleaning of organic molecules
Probing the Ligand Synthesis
NH HN
N
NH HN
N
H
H
N
N
N
N
H
H
N
+
CH3
+
CH3
N
meso-14N4Me6
NH HN
N
NH HN
N
racemic-14N4Me6
H
H
N
N
N
N
H
+
H3C
H
N
N
H3C
N
N
N
N
CH3
Crystallography of B14N4 Synthesis
H
CH3
CH3
N
N+
N
N
N
N+
N
N
N
N
N+
CH3
H
N
N+
N
N+
N+
N
N+
N
(+)
N
X
H
H2(Q14N4)2+
Q14N4
H3C
Me(Q14N4)+ {X = :}
HMe(Q14N4)2+ {X = H}
H
H3C
Me2(Q14N4)2+
H2Me2(B14N4)2+
CH3
CH3
CH3
H
N
N
N
N
N
N+
N
N+
N
N+
N
N
N
N
N
N+
N+
N
N+
N
H
meso-Q14N4Me6 racemic-Q14N4Me6
HMe(Q14N4Me6)2+
H3C
Me2(Q14N4Me6)2+
H3C
H
H2Me2(B14N4Me6)2+
racemic-Me2(B14N4Me6) Synthesis
Q14N4Me6
HMe(Q14N4Me6)2+
Me2(Q14N4Me6)2+
H2Me2(B14N4Me6)2+
Why Not meso-Me2(B14N4Me6)?
racemic-Q14N4Me6
meso-Q14N4Me6
MnIII Complexes (cont’d)
Mn(Me2(B14N4))Cl2 + OH-
PF6-
{ [Mn(Me (B14N4))(OH) ]PF }
2
2
6
H2O/EtOH
MeOH
[Mn(Me2(B14N4))(OMe)2]PF6
+0.542(243)
-0.781(628)
1.500
1.000
0.500
0.000
-0.500
Potential (V)
-1.000
-1.500
-2.000
Kinetic Stability of Complexes
Basic
Conditions (1 M KOH)
– FeII/MnII complexes--several days for any oxides to form
– MnII(Me2(B14N4))Cl2--isolated MnIII intact complex
Acidic Conditions (1 M HClO4)
–
–
–
–
–
Mn(Me2(B14N4))Cl2--t1/2 = 13.8 h (2.3 x 10-8 s)
Zn(Me2(B14N4))Cl2--t1/2 = 3.9 h (2.3 x 10-8 s)
Zn(Me2(B12N4))Cl2--t1/2 = 0.83 h
[Cu(Me2(B14N4))Cl]Cl--t1/2 > 6 years at 40 oC (1.4 x 10-9s)
[Cu(Me2(B14N4Me6))Cl]Cl-- t1/2 > 8 years at 40 oC
» Cu(Me414N4)2+-- t1/2 = 2.0 s in 1 M HNO3
» Cu(cis-14N4Me6)2+-- t1/2 = 2.0 s in 6.1 M HCl
» Cu(trans-14N4Me6)2+-- t1/2 = 22 days in 6.1 M HCl
Crystallographic Characterization (cont’d)
[Cu(Bn2B14N4)]+
[Cu(Me2(B14N4Me6))Cl]+
[Pd(Me2B14N4)Cl]+
Electron Configuration
Magnetic Moments
– FeII, MnII, NiII complexes are
high spin, as Do predicts
EPR Studies
– MnII complexes show typical
high spin d5 transition split by
I = 5/2 55Mn nuclei
(a)
(b)
2500
2700
2900
3100
3300
3500
3700
Magnetic Field (G)
meff = 5.80 ± 0.06 BM for Mn(Me2(B14N4))Cl2
a = Mn(Me2(B12N4))Cl2
b = Mn(Me2(B14N4))Cl2
3900
FeIII Complexes
– Fe(Me2(B#N4))Cl2 + Br2
FeIII EPR signal
X-Band EPR Spectrum of Fe(B13N4)Cl2+
0
500
1000
1500
2000
2500
3000
3500
4000
4500
Gauss
– Fe(H2B#N4)Cl2 + Air
[Cl(H2(B12N4))Fe-O-Fe(H2(B12N4))Cl]Cl2