Self Organized Maps (SOM)
Download
Report
Transcript Self Organized Maps (SOM)
CUNY Graduate Center
December 15
Erdal Kose
Outlines
Define SOMs
Application Areas
Structure Of SOMs (Basic Algorithm)
Learning Algorithm
Simulation and Results
Conclusion
References
SOMs
The best know and most popular model of Self-
organizing networks is the topology-preserving map
proposed by Teuvo Kohonen, known as Kohanen
networks
They provide a way of representing multidimensional
data in much lower dimensional space, such as one or
two dimensions.
Applications
Image compression
Data minding
Bibliographic classification
Image browsing systems
Medical Diagnosis
Speech recognition
Clustering
Structure of SOM
A self organized map consists of components called
nodes
Associated with each node is a weight vector of the same
dimension as the input data vectors
and a position in the map space
The usual arrangement of nodes is a regular spacing in
a hexagonal or rectangular grid
Learning Algorithm
Each node's weights are initialized.
A vector is chosen at random from the set of training data and
presented to the lattice.
Every node is examined to calculate which one's weights are
most like the input vector. The winning node is commonly
known as the Best Matching Unit (BMU).
The radius of the neighborhood of the BMU is now calculated.
This is a value that starts large, typically set to the 'radius' of the
lattice, but diminishes each time-step. Any nodes found within
this radius are deemed to be inside the BMU's neighborhood.
Each neighboring node's (the nodes found in step 4) weights are
adjusted to make them more like the input vector. The closer a
node is to the BMU, the more its weights get altered.
Repeat step 2 for N iterations.
http://www.ai-junkie.com/ann/som/som2.html
The learning Algorithm in detail
Random initialization means simply that random
values are assigned to weight vectors. This is the case if
nothing or little is known about the input data at the
time of the initialization
In one training step, one sample vector is drawn
randomly from the input data set , This vector is fed to
all units in the network and a similarity measure is
calculated between the input data sample and all the
weight vectors
Cont.
The best matching unit: The Euclidian distance
x mc min x mi , or
i
c arg min x mi
i
After finding the best-matching unit, units in the
SOM are updated
Cont..
The neighborhood function includes the learning rate
function
which is a decreasing function of time
and the function that dictates the form of the
neighborhood function.
Adjusting the Weights
Every node within the best matching unit’s (BMU)
neighborhood (including the BMU) has its weight
vector adjusted according to the following equation:
W(t+1)=W(t)+α(t)(V(t)-W(t)
Where t represents the time-step and α is the learning rate,
which decreases with time.
Basically, what this equation is saying, is that the new
adjusted weight for the node is equal to the old weight (W),
plus a fraction of the difference (α) between the old weight
and the input vector (V)
Visulization
World Poverty Map
A SOM has been used to classify statistical data
describing various quality-of-life factors such as state of
health, nutrition, educational services etc.
Conclusion
The Kohonen Feature Map was first introduced by
finnish professor Teuvo Kohonen (University of
Helsinki) in 1982.
The "heart" of this type of networks is the feature map
a neuron layer where neurons are organizing
themselves according to certain input values.
They could learn without supervision
References
A growing Self-Organizing Algorithm for Dynamic Clustering
Ryuji Ohta, Toshimichi Saito Hosei university ,Japan (IEEE 2001)
A Self-Organization Model of Feature Columns and Face
Responsive Neurons in the Temporal Contex Takashie Takahashi,
Tako Kurita National Institute of Advanced Industrial Science
and Technology (2001 IEEE)
http://www.cis.hut.fi/projects/ica/cocktail/cocktail_en.cgi
http://www.cis.hut.fi/~jhollmen/dippa/node9.html
http://www.ai-junkie.com/ann/som/som1.html
http://www.borgelt.net/doc/somd/somd.html
http://www.nnwj.de/sample-applet.html
http://fbim.fh-regensburg.de/~saj39122/jfroehl/diplom/esample.html